On the application of Euler’s method to linear integro differential equations and comparison with existing methods

On the application of Euler’s method to linear integro differential equations and comparison with existing methods

In this study, a collocation method using Euler method for solving systems of linear integro-differential equations is presented. The solution process is illustrated and various physically relevant results are obtained. Comparison of the obtained results with exact solutions and solutions obtained by other methods show that the proposed method is an effective and highly promising for linear integro-differential equation systems. All of numerical calculations have been made on a computer using a program written in Matlab.

___

  • [1] Agarwal RS, Bhargava R, Balaji AVS. Finite element solution of nonsteady three-dimensional micropolar fluid flow at a stagnation-point. International Journal of Engineering Science 1990; 28 (8): 851-857. doi: 10.1016/0020- 7225(90)90030-M
  • [2] Akyüz Daşçıoğlu A, Sezer M. Chebyshev polynomial solutions of systems of higher-order linear Fredholm– Volterra integro-differential equations. Journal of the Franklin Institute 2005; 342 (6): 688-701. doi: 10.1016/j.jfranklin.2005.04.001
  • [3] Al-Faour OMA, Saeed RK. Solution of a system of linear Volterra integral and integro-differential equations by spectral method. Al-Nahrain University Journal for Science 2006; 6 (2): 30-46.
  • [4] Arıkoğlu A, Özkol I. Solutions of integral and integro-differential equation systems by using differential transform method. Computers and Mathematics with Applications 2008; 56 (9): 2411-2417. doi: 10.1016/j.camwa.2008.05.017
  • [5] Biazar J, Babolian E, Islam R. Solution of a system of Volterra integral equations of the first kind by Adomian method. Applied Mathematics and Computation 2003; 139 (2-3): 249-258. doi: 10.1016/S0096-3003(02)00173-X
  • [6] Biçer KE, Sezer M. A computational method for solving differential equations with quadratic nonlinearity by using bernoulli polynomials. Thermal Science 2019; 23 (1): 275-283. doi: 10.2298/TSCI181128041B
  • [7] Bloom F. Ill-posed problems for integrodifferential equations in mechanics and electromagnetic theory. Society for Industrial and Applied Mathematics 1981. doi: 10.1137/1.9781611970890
  • [8] Büyükaksoy A, Alkumru A. Multiple diffraction of plane waves by a soft/hard strip. Journal of Engineering Mathematics 1995; 29 (2): 105-120. doi: 10.1007/BF00051738
  • [9] Cheon G. A note on the Bernoulli and Euler polynomials. Applied Mathematics Letters 2003; 16 (3): 365-368. doi:10.1016/S0893-9659(03)80058-7
  • [10] Ezechiáš J. Contribution to the calculation of thick arcs with respect to shearing strain and extension of the centroid axis. Computers and Structures 1988; 29 (4): 645-656. doi: 10.1016/0045-7949(88)90374-4
  • [11] Grau-Sánchez M, Noguera M, Gutiérrez JM. On some computational orders of convergence. Applied Mathematics Letters 2010; 23 (4): 472-478. doi: 10.1016/j.aml.2009.12.006
  • [12] Greenspan D. Dynamical difference equations. Computers and Mathematics with Applications 1998; 36 (10-12): 49-58. doi: 10.1016/S0898-1221(98)80008-4
  • [13] Gülsu M, Sezer M. Taylor collocation method for solution of systems of high-order linear Fredholm Volterra integro-differential equations. International Journal of Computer Mathematics 2006; 83 (4): 429-448. doi: 10.1080/00207160600988342
  • [14] Gürgöze M, Müller PC. Optimal positioning of dampers in multi-body systems. Journal of Sound and Vibration 1992; 158 (3): 517-530. doi: 10.1016/0022-460X(92)90422-T
  • [15] Holmaker K. Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones. SIAM Journal on Mathematical Analysis 1993; 24 (1): 116-128. doi: 10.1137/0524008.
  • [16] Issa A, Qatanani N, Daraghmeh A. Approximation techniques for solving linear systems of Volterra integrodifferential equations. Journal of Applied Mathematics 2020. doi: 10.1155/2020/2360487
  • [17] Javidi M. Modified homotopy perturbation method for solving system of linear Fredholm integral equations. Mathematical and Computer Modelling 2009; 50 (1-2): 159-165. doi: 10.1016/j.mcm.2009.02.003
  • [18] Kant T, Varaiya JH, Arora CP.Finite element transient analysis of composite and sandwich plates based on a refined theory and implicit time integration schemes. Computers and Structures 1990; 36 (3): 401-420. doi: 10.1016/0045- 7949(90)90279-B
  • [19] Karaçayır M. A Galerkin-like Numerical Method For Differential, Functional Differential and Integro-Differential Equations and Their Systems. PhD, Akdeniz Üniversitesi, Antalya, Türkiye, 2018, (in Turkish).
  • [20] Kopeikin IuD, Shishkin VP. Integral form of the general solution of equations of steady-state Thermoelasticity. Journal of Applied Mathematics and Mechanics 1984; 48 (1): 117-119. doi: 10.1016/0021-8928(84)90121-7
  • [21] Kürkçü ÖK, Aslan E, Sezer M. A numerical method for solving some model problems arising in science and convergence analysis based on residual function. Applied Numerical Mathematics 2017; 121 (C): 134-148. doi: 10.1016/j.apnum.2017.06.015
  • [22] Maleknejad K, Basirat B, Hashemizadeh E. A Bernstein operational matrix approach for solving a system of high order linear Volterra–Fredholm integro-differential equations. Mathematical and Computer Modelling 2012; 55 (3-4): 1363–1372. doi: 10.1016/j.mcm.2011.10.015
  • [23] Mirzaee F, Hoseini SF. A new collocation approach for solving systems of high-order linear Volterra integrodifferential equations with variable coefficients. Applied Mathematics and Computation 2017; 311 (C): 272-282. doi: 10.1016/j.amc.2017.05.031
  • [24] Mirzaee F, Hoseini SF. Solving systems of linear Fredholm integro-differential equations with Fibonacci polynomials. Ain Shams Engineering Journal 2014; 5 (1): 271-283. doi: 10.1016/j.asej.2013.09.002.
  • [25] Mirzaee F, Bimesl S. Application of Euler matrix method for solving linear and a class of nonlinear Fredholm integro-differential equations. Mediterranean Journal of Mathematics 2014; 11: 999-1018. doi: 10.1007/s00009-014- 0391-4
  • [26] Mirzaee F, Bimesl S. A uniformly convergent Euler matrix method for telegraph equations having constant coefficients. Mediterranean Journal of Mathematics 2016; 13: 497-515. doi: 10.1007/s00009-014-0486-y
  • [27] Mirzaee F, Bimesl S. A new Euler matrix method for solving systems of linear Volterra integral equations with variable coefficients. Journal of the Egyptian Mathematical Society 2014; 22 (2): 238-248. doi: 10.1016/j.joems.2013.06.016
  • [28] Mirzaee F, Bimesl S, Tohidi E. A numerical framework for solving high-order pantograph delay Volterra integrodifferential equations. Kuwait Journal of Science 2016; 43 (1): 69-83.
  • [29] Mirzaee F, Bimesl S, Tohidi E. Solving nonlinear fractional integro-differential equations of Volterra type using novel mathematical matrices. Journal of Computational and Nonlinear Dynamics 2015; 10 (6): 10-16. doi: 10.1115/1.4029281
  • [30] Mirzaee F, Bimesl S. Solving systems of high-order linear differential–difference equations via Euler matrix method. Journal of the Egyptian Mathematical Society 2014; 23 (2): 286-291. doi: 10.1016/j.joems.2014.05.003
  • [31] Mirzaee F, Bimesl S. A new approach to numerical solution of second-order linear hyperbolic partial differential equations arising from physics and engineering. Results in Physics 2013; 3: 241-247. doi: 10.1016/j.rinp.2013.10.002
  • [32] Pesterev AV, Bergman LA. Response of elastic continuum carrying moving linear oscillator. Journal of Engineering Mechanics 1997; 123 (8): 878-884. doi: 10.1061/(ASCE)0733-9399(1997)123:8(878)
  • [33] Pour-Mahmoud J, Rahimi-Ardabili MY, Shahmorad, S. Numerical solution of the system of Fredholm integrodifferential equations by the Tau method. Applied Mathematics and Computation 2005; 168 (1): 465-478. doi: 10.1016/j.amc.2004.09.026
  • [34] Saberi-Nadjafi J, Tamamgar M. The variational iteration method: a highly promising method for solving the system of integro differential equations. Computers and Mathematics with Applications 2008; 56 (2): 346-351. doi: 10.1016/j.camwa.2007.12.014
  • [35] Sorkun HH, Yalçınbaş S. Approximate solutions of linear Volterra integral equation systems with variable coefficients. Applied Mathematical Modelling 2010; 34 (11): 3451-3464. doi: 10.1016/j.apm.2010.02.034
  • [36] Tarakçı M, Özel M, Sezer M. Solution of nonlinear ordinary differential equations with quadratic and cubic terms by Morgan-Voyce matrix collocation method. Turkish Journal of Mathematics 2020; 44: 906-918. doi:10.3906/mat1908-102
  • [37] Volterra V. Theory of functionals and of integral and integro-differential equations. Dover publications 2005.
  • [38] Yue ZQ, Selvadurai APS. Contact problem for saturated poroelastic solid. Journal of Engineering Mechanics 1995; 121 (4): 502-512. doi: 10.1061/(ASCE)0733-9399(1995)121:4(502)
  • [39] Yusufoğlu E. An efficient algorithm for solving integro-differential equations system. Applied Mathematics and Computation 2007; 192 (1): 51-55. doi: 10.1016/j.amc.2007.02.134.
  • [40] Yusufoğlu E. Numerical solving initial value problem for Fredholm type linear integro-differential equation system. Journal of the Franklin Institute 2009; 346 (6): 636-649. doi: 10.1016/j.jfranklin.2009.03.003
  • [41] Yusufoğlu E. A homotopy perturbation algorithm to solve a system of Fredholm–Volterra type integral equations. Mathematical and Computer Modelling 2008; 47 (11-12): 1099-1107. doi: 10.1016/j.mcm.2007.06.022
  • [42] Yüzbaşı Ş. Numerical solutions of system of linear Fredholm–Volterra integro-differential equations by the Bessel collocation method and error estimation. Applied Mathematics and Computation 2015; 250 : 320-338. doi: 10.1016/j.amc.2014.10.110
  • [43] Zimmerman WR. Time domain solutions to partial differential equations using SPICE, IEEE Transactions on Education 1996; 39 (4): 563-573. doi: 10.1109/13.545689.