Continuation value computation using Malliavin calculus under general volatility stochastic process for American option pricing

Continuation value computation using Malliavin calculus under general volatility stochastic process for American option pricing

American options represent an important financial instrument but are notoriously difficult to price, especially when the volatility is not constant. We explore the conditions required to apply Malliavin calculus to price American options when the volatility follows a general stochastic differential process, and develop the expressions to compute the continuation value at any time before the expiration date, given the current asset price and volatility. The developed methodology can then be applied to price American options.

___

  • [1] Abbas-Turki LA, Lapeyre B. American Options by Malliavin Calculus and Nonparametric Variance and Bias Reduction Methods. SIAM Journal on Financial Mathematics 2012; 3 (1): 479-510.
  • [2] Alòs E, Lorite DG. Malliavin Calculus in Finance Theory and Practice. Boca Raton, FL, USA: Taylor & Francis, 2021.
  • [3] Alòs E, Shiraya K. Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach. Finance and Stochastics 2019; 23 (2): 423-447.
  • [4] Bally V, Caramellino L, Zanette A. Pricing and Hedging American Options by Monte Carlo Methods using a Malliavin Calculus Approach. Monte Carlo Methods and Applications 2005; 2 (11): 97-133.
  • [5] Benhamou É. Smart Monte Carlo: Various Tricks Using Malliavin Calculus. Quantitative Finance 2002; 5 (2): 329-336.
  • [6] Bouchard B, Ekeland I, Touzi N. On the Malliavin approach to Monte Carlo approximation of conditional expectations. Finance and Stochastics 2004; 8 (2): 45-71.
  • [7] Caramellino L, Zanette A. Monte Carlo methods for pricing and hedging American options in high dimension. Risk and Decision Analysis 2011; 2 (4): 207-220.
  • [8] Da Prato G, Lunardi A, Tubaro L. Malliavin calculus for non-Gaussian differentiable measures and surface measures in Hilbert spaces. Transactions of the American Mathematical Society 2018; 370 (8): 5795-5842.
  • [9] Decreusefonda L, Halconruya H. Malliavin and Dirichlet structures for independent random variables. Stochastic Processes and their Applications 2019; 129 (8): 2611-2653.
  • [10] Fouque JP, Papanicolaou G, Ronnie SK. Derivatives in Financial Markets with Stochastic Volatility. Cambridge, United Kingdom: Cambridge University Press, 2000.
  • [11] Fournié E, Lasry JM, Lebuchoux J, Lions PL. Applications of Malliavin Calculus to Monte Carlo Methods in Finance. Finance and Stochastics 1999; 3 (4): 391-412.
  • [12] Fournié E, Lasry JM, Lebuchoux J, Lions PL. Applications of Malliavin Calculus to Monte Carlo Methods in Finance II. Finance and Stochastics 2001; 5 (2): 201-236.
  • [13] Hagan PS, Kumar D, Lesniewski A, Woodward DE. Managing Smile Risk. Wilmott Magazine 2002; September: 84-108.
  • [14] Hauseux P, Hale JS, Bordas SPA. Calculating the Malliavin derivative of some stochastic mechanics problems. Plos One 2017; 12 (12): 1-18.
  • [15] Heston SL. Closed form solution for options with stochastic volatility with application to bonds and currency options. The Review of Financial Studies 1993; 6 (2): 327-343.
  • [16] Jäckel P. Stochastic volatility models: Past, present and future. The Best of Wilmott I: Incorporating the Quantitative Finance Review. Chichester, United Kingdom: John Wiley and Sons 2004; pp. 379-390.
  • [17] Kharrat M. Pricing American put option using Malliavin derivatives under stochastic volatility. Revista de la Unión Matemática Argentina 2019; 60 (1): 137-147.
  • [18] Laukkarinen E. Malliavin smoothness on the Lévy space with Hölder continuous or BV functionals. Stochastic Processes and their Applications 2020; 130 (8): 4766-4792.
  • [19] Léandre R. Malliavin calculus of Bismut type for an operator of order four on a Lie group. Journal of PseudoDifferential Operators and Applications 2018; 9 (2): 419-430.
  • [20] Levajković T, Seleši D. Malliavin calculus for generalized and test stochastic processes. Filomat 2017; 31 (13): 4231-4259.
  • [21] Malliavin P. Stochastic calculus of variations and hypoelliptic operators. In Proceedings of the International Symposium on Stochastic Differential Equations; Kyoto, Japan; 1978. Wiley and Sons, New York, NY, USA. pp. 195-263.
  • [22] Mancino ME, Nonparametric Malliavin–Monte Carlo Computation of Hedging Greeks. Risks 2020; 8 (4): 1-17.
  • [23] Pascucci A. PDE and Martingale Methods in Option Pricing. Milan, Italy: Springer-Verlag, 2010.
  • [24] Saporito YF. Pricing Path-Dependent Derivatives under Multiscale Stochastic Volatility Models: A Malliavin Representation. SIAM Journal on Financial Mathematics 2020; 11 (3): 14-25.
  • [25] Skorokhod AV. On a generalization of the stochastic integral. Theory of Probability and Its Applications 1975; 20 (2): 219-233.
  • [26] Stein EM, Stein JC. Stock Price Distributions with Stochastic Volatility: An Analytic Approach. Review of Financial Studies 1991; 4; 727-752.
  • [27] Vasicek O. An Equilibrium Characterization of the Term Structure. Journal of Financial Economics 1977; 5 (2): 177-188.
  • [28] Yamada T. An Arbitrary High Order Weak Approximation of SDE and Malliavin Monte Carlo: Analysis of Probability Distribution Functions. SIAM Journal on Numerical Analysis 2019; 57 (2): 563-591.
  • [29] Yamada T, Yamamoto K. A second-order discretization with Malliavin weight and quasi-Monte Carlo method for option pricing. Quantitative Finance 2020; 20 (11): 1825-1837.