Generalized Fibonacci sequences related to the extended hecke groups and an application to the extended modular group
The extended Hecke groups \overline{H}(l q) are generated by T(z)=-1/z, S(z)=-1/(z+l q) and R(z)=1/ \overline{z} with l q=2\cos (p /q) for q\geq 3 integer. In this paper, we obtain a sequence which is a generalized version of the Fibonacci sequence given in [6] for the extended modular group \overline{G }, in the extended Hecke groups \overline{H}(lq). Then we apply our results to \overline{G } to find all elements of the extended modular group \overline{G }.
Generalized Fibonacci sequences related to the extended hecke groups and an application to the extended modular group
The extended Hecke groups \overline{H}(l q) are generated by T(z)=-1/z, S(z)=-1/(z+l q) and R(z)=1/ \overline{z} with l q=2\cos (p /q) for q\geq 3 integer. In this paper, we obtain a sequence which is a generalized version of the Fibonacci sequence given in [6] for the extended modular group \overline{G }, in the extended Hecke groups \overline{H}(lq). Then we apply our results to \overline{G } to find all elements of the extended modular group \overline{G }.
___
- Cang¨ul, I. N.; Singerman, D. Normal subgroups of Hecke groups and regular maps, Math. Proc. Cambridge Philos. Soc. 123 , no. 1, 59–74, (1998).
- Fine, B. Trace Classes and quadratic Forms in the modular group, Canad. Math. Bull. Vol.37 (2), 202-212, (1994).
- Hecke, E. ¨Uber die bestimmung dirichletscher reichen durch ihre funktionalgleichungen, Math. Ann., 112, 664-699, (1936).
- Ikikardes, S.; Koruo˘glu, ¨O.; Sahin, R. Power subgroups of some Hecke groups, Rocky Mountain J. Math. 36 , no. 2, –508, (2006).
- Jones,G. A.; Thornton, J. S. Automorphisms and congruence subgroups of the extended modular group, J. London Math. Soc. (2) 34, 26-40, (1986).
- Koruo˘glu, ¨O.;S¸ahin, R; Ikikarde¸s S. Trace Classes and Fixed Points for the Extended Modular group Γ, Tr. J. of Math., 32, 11-19, (2008).
- Mushtaq, Q; Hayat, U. Horadam generalized Fibonacci numbers and the modular group, Indian J. Pure Appl. Math. , no.5, 345-352, (2007).
- Mushtaq, Q; Hayat, U. Pell numbers, Pell-Lucas numbers and modular group, Algebra Colloq., 14, no.1, 97-102, (2007).
- Rankin, R. A. Subgroups of the modular group generated by parabolic elements of constant amplitude, Acta Arith. ,145–151, (1971).
- Sahin, R.; Bizim, O.; Cangul, I. N.Commutator subgroups of the extended Hecke groups H ( λq) , Czechoslovak Math. J. 54(129), no. 1, 253–259, (2004).
- Sahin, R.; Bizim, O. Some subgroups of the extended Hecke groups H ( λq) , Acta Math. Sci., Ser. B, Engl. Ed., Vol.23, No.4, 497-502, (2003).
- Sahin, R.; Ikikardes S.; Koruo˘glu, ¨O. On the power subgroups of the extended modular group Γ , Tr. J. of Math., 29, 151, (2004).
- Sahin, R.; Ikikardes, S.; Koruo˘glu, ¨O. Some normal subgroups of the extended Hecke groups H ( λp), Rocky Mountain J. Math. 36, no. 3, 1033–1048, (2006).
- Singerman, D. PSL(2,q) as an image of the extended modular group with applications to group actions on surfaces, Proc. Edinb. Math. Soc., II. Ser. 30,143-151, (1987).
- Yilmaz ¨Ozg¨ur, N. Generalizations of Fibonacci and Lucas sequences, Note Mat. 21, no. 1, 113–125, (2002). ¨
- Balıkesir University, Necatibey Education Faculty, Balıkesir-TURKEY e-mail: ozdenk@balikesir.edu.tr Recep S¸AH˙IN Balıkesir University, Faculty of Arts and Science, Mathematics Department, 10145 Balıkesir-TURKEY e-mail: rsahin@balikesir.edu.tr