A series evaluation technique based on a modified Abel lemma

A series evaluation technique based on a modified Abel lemma

We introduce a technique for determining infinite series identities through something of a combination of the modified Abel lemma on summation by parts and a method of undetermined coefficients. We succeed in applying our technique in our proving a nontrivial variant of Gauss’ hypergeometric identity, giving us an evaluation for a family of $_{3}F_{2}(1)$ -series with three free parameters, and to establish a $_{3}F_{2}(-1)$ -variant of Kummer’s hypergeometric identity. Also, we apply the technique upon which this article is based to formulate a new and simplified proof of a remarkable series evaluation recently derived by Cantarini via the generalized Clebsch–Gordan integral.

___

  • [1] Abel NH. Untersuchungen über die Reihe: $1+frac{m}{1}x+frac{m.(m-1)}{1.2}.x^2+frac{m.(m-1).(m-2)}{1.2.3}.x^3+...$ u.s.w.. Journal Reine Angewandte Mathematik 1826; 1:311-339 (in German).
  • [2] Bailey DH, Borwein JM, Broadhurst D, Glasser ML. Elliptic integral evaluations of Bessel moments and applications. Journal of Physics A: Mathematical and Theoretical 2008; 41 (20): 1-46. doi: 10.1088/1751-8113/41/20/205203
  • [3] Borwein JM, Borwein PB. Pi and the AGM. Canadian Mathematical Society Series of Monographs and Advanced Texts. New York: Wiley, 1987.
  • [4] Borwein JM, Crandall RE. Closed forms: what they are and why we care. Notices of the American Mathematical Society 2013; 60 (1): 50-65. doi: 10.1090/NOTI936
  • [5] Brychkov YA, Marichev OI, Prudnikov AP. Integrals and series, Volume 3. New York, Philadelphia [etc]: Gordon and Breach science publications, 1990.
  • [6] Campbell JM. A WZ proof for a Ramanujan-like series involving cubed binomial coefficients. Journal of Difference Equations and Applications 2021; 27 (10): 1507-1511. doi: 10.1080/10236198.2021.1993840
  • [7] Campbell JM. WZ proofs for lemniscate-like constant evaluations. Integers 2021; 21 (A107): 1-15.
  • [8] Campbell JM, Cantarini M, D’Aurizio J. Symbolic computations via Fourier–Legendre expansions and fractional operators. Integral Transform and Special Functions 2022; 33 (2): 157-175. doi: 10.1080/10652469.2021.1919103
  • [9] Campbell JM, Chu W. Lemniscate-like constants and infinite series. Mathematica Slovaca 2021; 71 (4): 845-858. doi: 10.1515/ms-2021-0025
  • [10] Cantarini M, A note on Clebsch–Gordan integral, Fourier–Legendre expansions and closed form for hypergeometric series, Ramanujan Journal 2021. doi: 10.1007/s11139-021-00496-7
  • [11] Cantarini M, D’Aurizio J. On the interplay between hypergeometric series, Fourier–Legendre expansions and Euler sums. Bolletino dell’Unione Matematica Italiana 2019; 12 (4): 623-656. doi: 10.1007/s40574-019-00198-5
  • [12] Chen KW, Chen YH. Infinite series containing generalized harmonic functions. Notes on Number Theory and Discrete Mathematics 2020; 26: 85-104. doi: 10.7546/nntdm.2020.26.2.85-104
  • [13] Choi J, Rathie AK. General Summation Formulas for the Kampé de Fériet Function. Montes Taurus Journal of Pure and Applied Mathematics 2019; 1 (1): 107-128.
  • [14] Chu W. Abel’s lemma on summation by parts and basic hypergeometric series. Advances in Applied Mathematics 2007; 39 (4): 490-514. doi: 10.1016/j.aam.2007.02.001
  • [15] Chu W. Dougall’s bilateral $_2H_2$ -series and Ramanujan-like π -formulae. Mathematics of Computation 2011; 80 (276): 2223-2251. doi: 10.1090/S0025-5718-2011-02474-9
  • [16] Chu W. Evaluation of nonterminating $_3F_2(frac{3}{4})$-series. Journal of Mathematical Analysis and Applications 2017; 450 (1): 490-503. doi: 10.1016/j.jmaa.2017.01.029
  • [17] Chu W. Infinite series identities on harmonic numbers. Results in Mathematics 2012; 61 (3-4): 209-221. doi: 10.1007/s00025-010-0089-2
  • [18] Chu W. Telescopic generalizations for two $_3F_2$ -series identities. Mathematica Slovaca 2012; 62 (4): 689-694. doi: 10.2478/s12175-012-0038-5
  • [19] Chu W, Campbell JM. Harmonic sums from the Kummer theorem. Journal of Mathematical Analysis and Applications 2021; 501 (2): 1-37. doi: 10.1016/j.jmaa.2021.125179
  • [20] Chu W, Jia C. Abel’s method on summation by parts and theta hypergeometric series. Journal of Combinatorial Theory, Series A 2008; 115 (5): 815-844. doi: 10.1016/j.jcta.2007.11.002
  • [21] Chu W, Wang X. The modified Abel lemma on summation by parts and terminating hypergeometric series identities. Integral Transforms and Special Functions 2009; 20 (1-2): 93-118. doi: 10.1080/10652460802499828
  • [22] Chu W, Zhang W. Accelerating Dougall’s $_5F_4$ -sum and infinite series involving π . Mathematics of Computation 2014; 83 (285): 475-512. doi: 10.1090/S0025-5718-2013-02701-9
  • [23] Karlsson PW. Reduction of hypergeometric functions with integral parameter differences. Indagationes Mathematicae (Proceedings) 1977; 77 (3): 195-198. doi: 10.1016/1385-7258(74)90035-3
  • [24] Milovanović GV, Rathie AK. Four Unified Results for Reducibility of Srivastava’s Triple Hypergeometric Series HB . Montes Taurus Journal of Pure and Applied Mathematics 2021; 3 (3): 155-164.
  • [25] Nimbran AS. Extensions of Ramanujan’s three series for $frac{1}{pi }$ and related series. The Mathematics Student 2021; 90(1-2): 143-153.
  • [26] Olver FWJ, Lozier DW, Boisvert RF, Clark CW. NIST handbook of mathematical functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington DC, Cambridge: Cambridge University Press, 2010.
  • [27] Qureshi MI, Dar SA. Some Hypergeometric Summation Theorems and Reduction Formulas via Laplace Transform Method. Montes Taurus Journal of Pure and Applied Mathematics 2021; 3 (3): 182-199.
  • [28] Rakha MA, Rathie AK. Generalizations of classical summation theorems for the series $_2F_1 and _3F_2$ with applications. Integral Transforms and Special Functions 2011; 22 (11): 823-840. doi: 10.1080/10652469.2010.549487
  • [29] Shpot MA, Srivastava HM. The Clausenian hypergeometric function $_3F_2$ with unit argument and negative integral parameter differences. Applied Mathematics and Computation 2015; 259: 819-827. doi: 10.1016/j.amc.2015.03.031
  • [30] Tremblay R. New Quadratic Transformations of Hypergeometric Functions and Associated Summation Formulas Obtained with the Well-Poised Fractional Calculus Operator. Montes Taurus Journal of Pure and Applied Mathematics 2020; 2 (1): 36-62.
  • [31] Vidunas R. A generalization of Kummer’s identity. Rocky Mountain Journal of Mathematics 2002; 32 (2): 919-936. doi: 10.1216/rmjm/1030539701
  • [32] Wang C. Some transformations for the well-poised $_7F_6$(1)-series. Ars Combinatoria 2013; 108: 3-11.
  • [33] Wang C, Dai J, Mező I. A nonterminating $_7F_6$ -series evaluation. Integral Transforms and Special Functions 2018; 29 (9): 719-724. doi: 10.1080/10652469.2018.1492571
  • [34] Wang X. Infinite series containing generalized harmonic numbers. Results in Mathematics 2018; 73 (1): 1-14. doi: 10.1007/s00025-018-0774-0
  • [35] Wang X, Chu W. Infinite series identities involving quadratic and cubic harmonic numbers. Publicacions Matemàtiques 2018; 62 (1): 285-300. doi: 10.5565/PUBLMAT6211813
  • [36] Wei C, Gong D. Extensions of Ramanujan’s two formulas for 1/π . Journal of Number Theory 2013; 133 (7): 2206-2216. doi: 10.1016/J.JNT.2013.01.006
  • [37] Zhang W. Common extension of the Watson and Whipple sums and Ramanujan-like π -formulae. Integral Transforms and Special Functions 2015; 26 (8): 600-618. doi: 10.1080/10652469.2015.1030637
  • [38] Zhou Y. Legendre functions, spherical rotations, and multiple elliptic integrals. Ramanujan Journal 2014; 34 (3): 373-428. doi: 10.1007/s11139-013-9502-2