A metric invariant of Möbius transformations
A metric invariant of Möbius transformations
The complex unit disk D = {z ∈ C: |z| < 1} is endowed with Möbius addition ⊕M defined by $woplus M;;z=frac{w+z}{1+wz}$ We prove that the metric dT defined on D by $d_t(omega,z)=tan^{-1}left|-omegaoplus M;zright|$ is an invariant of Möbius transformationscarrying D onto itself. We also prove that (D, dT ) and (D, dP ) , where dP denotes the Poincaré metric, have the sameisometry group and then classify the isometries of (D, dT ) .
___
- [1] Abe T. Gyrometric preserving maps on Einstein gyrogroups, Möbius gyrogroups and Proper Velocity gyrogroups.
Nonlinear Functional Analysis and Applications 2014; 19: 1-17.
- [2] Beardon AF, Minda D. The hyperbolic metric and geometric function theory. In: Quasiconformal mappings and
their applications. Narosa, New Delhi; 2007. pp. 9-56.
- [3] Bulut S, Yilmaz ÖN. A new characterization of Möbius transformations by the use of Apollonius points of (2n−1)-
gons. Acta Mathematica Sinica, English Series 2005; 21 (3): 667-672.
- [4] Demirel O. A characterization of Möbius transformations by use of hyperbolic regular star polygons. Proceedings
of the Romanian Academy, Series A 2013; 14: 13-19.
- [5] Demirel O. A characterization of Möbius transformations by use of hyperbolic triangles. Journal of Mathematical
Analysis and Applications 2013; 398 (2): 457-461. doi: 10.1016/j.jmaa.2012.05.044
- [6] Demirel O, Seyrantepe ES. A characterization of Möbius transformations by use of hyperbolic regular polygons.
Journal of Mathematical Analysis and Applications 2011; 374 (2): 566-572. doi: 10.1016/j.jmaa.2010.08.049
- [7] Dyakonov KM. A characterization of Möbius transformations. Comptes Rendus Mathématique, Académie des
Sciences, Paris 2014; 352 (7-8): 593-595. doi: 10.1016/j.crma.2014.05.009
- [8] Greene RE, Krantz SG. Function Theory of One Complex Variable, 3rd edition. Providence, RI, USA: AMS, 2006.
- [9] Haruki H, Rassias TM. A new invariant characteristic property of Möbius transformations from the standpoint
of conformal mapping. Journal of Mathematical Analysis and Applications 1994; 181 (2): 320-327. doi:
10.1006/jmaa.1994.1024
- [10] Haruki H, Rassias TM. A new characteristic of Möbius transformations by use of Apollonius points of triangles.
Journal of Mathematical Analysis and Applications 1996; 197: 14-22. doi: 10.1006/jmaa.1996.0002
- [11] Haruki H, Rassias TM. A new characteristic of Möbius transformations by use of Apollonius quadrilaterals.
Proceedings of the American Mathematical Society 1998; 126 (10): 2857-2861.
- [12] Haruki H, Rassias TM. A new characterization of Möbius transformations by use of Apollonius hexagons. Proceedings
of the American Mathematical Society 2000; 128 (7): 2105-2109.
- [13] Krantz SG. Complex Analysis: The Geometric Viewpoint, 2nd edition. Washington, DC, USA: MAA, 2004.
- [14] Niamsup P. A characterization of Möbius transformations. International Journal of Mathematics and Mathematical
Sciences 2000; 24 (10): 663-666. doi: 10.1155/S0161171200010255
- [15] Niamsup P. A note on the characteristics of Möbius transformations. Journal of Mathematical Analysis and
Applications 2000; 248: 203-215. doi: 10.1006/jmaa.2000.6888
- [16] Niamsup P. A note on the characteristics of Möbius transformations II. Journal of Mathematical Analysis and
Applications 2001; 261: 151-158. doi: 10.1006/jmaa.2001.7485
- [17] Suksumran T. The algebra of gyrogroups: Cayley’s theorem, Lagrange’s theorem, and isomorphism theorems. In:
Rassias TM and Pardalos PM (editors). Essays in Mathematics and its Applications: In Honor of Vladimir Arnold.
Switzerland: Springer, 2016, pp. 369-437.
- [18] Suksumran T, Wiboonton K. Isomorphism theorems for gyrogroups and L-subgyrogroups. Journal of Geometry
and Symmetry in Physics 2015; 37: 67-83. doi: 10.7546/jgsp-37-2015-67-83
- [19] Ungar AA. Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity. Hackensack, NJ,
USA: World Scientific, 2008.
- [20] Ungar AA. From Möbius to gyrogroups. The American Mathematical Monthly 2008; 115 (2): 138-144.
- [21] Yang S. A characterization of Möbius transformations. Proceedings of the Japan Academy, Series A, Mathematical
Sciences 2008; 84 (2): 35-38.