On the regularity of the solution map of the Euler–Poisson system

On the regularity of the solution map of the Euler–Poisson system

In this paper we consider the Euler–Poisson system (describing a plasma consisting of positive ions with anegligible temperature and massless electrons in thermodynamical equilibrium) on the Sobolev spaces $H^s(mathbb{R}^3),;s>5/2$. Using a geometric approach we show that for any time T > 0 the corresponding solution map, $(p_{0,u_0});mapsto(p(T),;u(T))$ is nowhere locally uniformly continuous. On the other hand it turns out that the trajectories of the ions are analyticcurves in $mathbb{R}^3$

___

  • [1] Arnold V. Sur la géometrie differentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluids parfaits. Annales de l’Institut Fourier 1966; 16 (1): 319-361. doi: 10.5802/aif.233 (in French)
  • [2] Bourgain J, Li D. Galilean Boost and Non-uniform Continuity for Incompressible Euler. Communications in Mathematical Physics 2019; 1-20. doi: 10.1007/s00220-019-03373-z
  • [3] Chemin JY. Perfect incompressible fluids, translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Oxford Lecture Series in Mathematics and its Applications, 14. New York, NY, USA: The Clarendon Press, 1998.
  • [4] Constantin P, Vicol V, Wu J. Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models. Advances in Mathematics 2015; 285: 352-393. doi: 10.1016/j.aim.2015.05.019
  • [5] Ebin D, Marsden J. Groups of diffeomorphisms and the motion of an incompressible fluid. Annals of Mathematics Second Series 1970; 92: 102-163. doi: 10.2307/1970699
  • [6] Himonas AA, Misiolek G, Tiğlay F. On unique continuation for the modified Euler–Poisson equations. Discrete and Continuous Dynamical Systems Series A 2007; 19 (3): 515-529. doi: 10.3934/dcds.2007.19.515
  • [7] Himonas AA, Misiolek G. Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics. Communications in Mathematical Physics 2010; 296 (1): 285-301. doi: 10.1007/s00220-010-0991-
  • [8] Holmes J, Tiğlay F. Continuity properties of the solution map for the Euler–Poisson equation. Journal of Mathematical Fluid Mechanics 2018; 20 (2): 757-769. doi: 10.1007s00021-017-0343-4
  • [9] Inci H, Kappeler T, Topalov P. On the regularity of the composition of diffeomorphisms. Memoirs of the American Mathematical Society 2013;226 (1062). doi: 10.1090/S0065-9266-2013-00676-4
  • [10] Inci H. On the regularity of the solution map of the incompressible Euler equation. Dynamics of Partial Differential Equations 2015; 12 (2): 97-113. doi: 10.4310/DPDE.2015.v12.n2.a1
  • [11] Inci H. On the well-posedness of the Holm-Staley b-family of equations. Journal of Nonlinear Mathematical Physics 2016; 23 (2): 213-233. doi: 10.1080/14029251.2016.1161261
  • [12] Inci H. On a Lagrangian formulation of the incompressible Euler equation. Journal of Partial Differential Equations 2016; 29 (4). doi: 10.4208/jpde.v29.n4.5
  • [13] Inci H. On the well-posedness of the inviscid SQG equation. Journal of Differential Equations 2018; 264 (4): 2660-2683. doi: 10.1016/j.jde.2017.10.032
  • [14] Lannes D, Linares F, Saut JC. The Cauchy problem for the Euler–Poisson system and derivation of the Zakharov- Kuznetsov equation. Studies in phase space analysis with applications to PDEs, 181-213. Progress in Nonlinear Differential Equations and their Applications, 84, Birkhäuser/Springer, New York, 2013. doi: 10.1007/978-1-4614- 6348-1_10