Principal parts of a vector bundle on projective line and the fractional derivative
Principal parts of a vector bundle on projective line and the fractional derivative
This work is an exposition on computational aspects of principal parts of a vector bundle on projectiveline over the field of characteristic zero. Principal parts help determine the possibility of algebraically formalizinginfinitesimal-neighborhoods of subschemes inside some ambient scheme. The purpose of this study is to look for thepossibility of formalizing the algebraic geometric interpretation of fractional derivative. For the latter, this study followsthe approach proposed by Vasily Tarasov. The difference is that Tarasov proposed a geometric interpretation using finiteorderjet bundles from differential geometry. Present study proposes finite-order principal parts of the structure-sheaf ofreal projective line as its formal algebraic geometric parallel.
___
- [1] Abdelhakim AA. The flaw in the conformable calculus: it is conformable because it is not fractional. Fractional
Calculus & Applied Analysis. De Gruyter 2019; 22(2): 242-254.
- [2] Adda FB. Geometric interpretation of the fractional derivative. Journal of Fractional Calculus 1997; 11: 21-51.
- [3] Adda FB. The differentiability in the fractional calculus. Nonlinear Analysis 2001; 47: 5423-5428.
- [4] Das S. Functional Fractional Calculus. Berlin & Heidelberg, Germany: Springer-Verlag, 2011.
- [5] Gelfand SI, Manin YI. Methods of Homological Algebra. Springer Monographs in Mathematics. Heidelberg, Germany:
Springer-Verlag, 2003
- [6] Guzman PM, Langton G, Bittencurt LMM, Medina J, Valdes JEN. A new definition of a fractional derivative of
local type. Journal of Mathematical Analysis. Ilirias Research Istitute 2018; 9(2): 88-98.
- [7] Hartshorne R. Algebraic Geometry. Graduate Texts in Mathematics. New York, NY, USA: Springer-Verlag, 1977.
- [8] Huybrechts D. Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. New York,
NY, USA: Oxford University Press, 2006.
- [9] Hermann R. Fractional Calculus: An Introduction to Physicists. London, UK: World Scientific, 2014.
- [10] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam,
Netherlands: Elsevier, 2006.
- [11] Laksov D, Thorup A. Weierstrass points on schemes. Journal f ¨ur die reine und angewandte Mathematik 1995; 460:
127-164.
- [12] Maakestad H. Modules of principal parts on the projective line. Arkiv f ¨ur Matematik 2004; 42 (2): 307-324.
- [13] Maakestad H. Principal parts on the projective line over arbitrary rings. Manuscripta Mathematica 2008; 126 (4):
443-464.
- [14] Machado JAT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science
and Numerical Simulation 2011; 16 (3): 1140-1153.
- [15] Machado JAT, Galhano AM, Trujillo JJ. Science metrics on fractional calculus development since 1966. Fractional
Calculus & Applied Analysis 2013; 16 (2): 479-500.
- [16] Munkres JR. Topology. New Jersey, USA: Prentice Hall, 2000.
- [17] Perkinson D. Curves in Grassmanian. Transactions of American Mathematical Society 1995; 347 (9): 379-3246.
- [18] Rahmat MRS. A new definition of conformable fractional derivative on arbitrary time scales. Advances in Difference
Equations 2019: doi: 10.1186/s13662-019-2294-y
- [19] Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives Theory and Applications. New York, NY,
USA: Gordon and Breach, 1993.
- [20] Tavassoli MH, Tavassoli A, Rahimi MRO. The geometric and physical interpretation of fractional order derivatives
of polynomial functions. Differential Geometry-Dynamical Systems 2013; 15: 93-104.
- [21] Tarasov VE. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media.
Beijing, China: Higher Education Press, 2010.
- [22] Tarasov VE. Geometric Interpretation of Fractional-Order Derivative. Fractional Calculus & Applied Analysis 2016;
19 (5): 1200-1221.
- [23] Tarasov VE. Local fractional derivatives of differentiable functions are integer-order derivatives or zero. International
Journal of Applied and Computational Mathematics 2017; 2(2): 195-201.
- [24] Tarasov VE. No nonlocality. No fractional derivative. Communications in Nonlinear Science and Numerical Simulation
2018; 62: 157-163.
- [25] Wei Y, Chen Y, Cheng S, Wang Y. A note on short memory principle of fractional calculus. Fractional Calculus &
Applied Analysis 2017; 20(6): 1382-1404