On the n-strong Drazin invertibility in rings

On the n-strong Drazin invertibility in rings

Let R be a ring and n be a positive integer. In this paper, further results on the n-strong Drazin inverseare obtained in a ring. We prove that a ∈ R is n-strongly Drazin invertible if and only if a−an+1 is nilpotent. In termsof this characterization, the extensions of Cline’s formula and Jacobson’s lemma for this inverse are proved. Moreover,the n-strong Drazin invertibility for the sums of two elements is considered. We prove that a, b ∈ R are n-stronglyDrazin invertible if and only if a + b is n-strongly Drazin invertible, under the condition ab = 0. As applications forthe additive results, we obtain some equivalent conditions of the n-strong Drazin invertibility of matrices over a ring.

___

  • [1] Castro-González N, Mendes-Araújo C, Patrício P. Generalized inverses of a sum in rings. Bulletin of the Australian Mathematical Society 2010; 82: 156-164. doi: 10.1017/S0004972710000080
  • [2] Chen HY, Sheibani M. On Hirano inverses in rings. Turkish Journal of Mathematics 2019; 43 (4): 2049-2057. doi: 10.3906/mat-1902-105
  • [3] Chen JL, Zhuang GF, Wei YM. The Drazin inverse of a sum of morphisms. Acta Mathematica Scientia 2009; 29A (3): 538-552 (in Chinese).
  • [4] Cline RE. An application of representation for the generalized inverse of a matrix. MRC Technical Report 592, 1965.
  • [5] Corach G, Duggal B, Harte RE. Extensions of Jacobson’s lemma. Communications in Algebra 2013; 41: 520-531. doi: 10.1080/00927872.2011.602274
  • [6] Cvetković-Ilić DS, Harte R. On a Jacobson’s lemma and Drazin invertibility. Applied Mathematics Letters 2010; 23: 417-420. doi: 10.1016/j.aml.2009.11.009
  • [7] Cvetković-Ilić DS, Liu XY, Wei YM. Some additive results for the generalized Drazin inverse in a Banach algebra. Electronic Journal of Linear Algebra 2011; 22: 1049-1058.
  • [8] Deng CY, Wei YM. New additive results for the generalized Drazin inverse. Journal of Mathematical Analysis and Applications 2010; 370: 313-321. doi: 10.1016/j.jmaa.2010.05.010
  • [9] Drazin MP. Pseudo-inverses in associative rings and semigroups. American Mathematical Monthly 1958; 65: 506- 514.
  • [10] Drazin MP. Commuting properties of generalized inverses. Linear Multilinear Algebra 2013; 61: 1675-1681. doi: 10.1080/03081087.2012.753593
  • [11] Hartwig RE, Shoaf J. Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices. Journal of the Australian Mathematical Society 1977; 24 (Series A): 10-34.
  • [12] Hartwig RE, Wang GR, Wei YM. Some additive results on Drazin inverse. Linear Algebra and its Applications 2001; 322: 207-217. doi: 10.1016/S0024-3795(00)00257-3
  • [13] Lian HF, Zeng QP. An extension of Cline’s formula for a generalized Drazin inverse. Turkish Journal of Mathematics 2016; 40: 161-165. doi: 10.3906/mat-1505-4
  • [14] Liao YH, Chen JL, Cui J. Cline’s formula for the generalized Drazin inverse. Bulletin of the Malaysian Mathematical Sciences Society 2014; 37: 37-42.
  • [15] Mosić D. The generalized and pseudo n-strong Drazin inverses in rings. Linear Multilinear Algebra 2019. doi: 10.1080/03081087.2019.1599806
  • [16] Mosić D. A note on Cline’s formula for the generalized Drazin inverse. Linear Multilinear Algebra 2015; 63: 1106- 1110. doi: 10.1080/03081087.2014.922965
  • [17] Mosić D. Extensions of Jacobson’s lemma for Drazin inverse. Aequationes mathematicae 2017; 91: 419-428. doi: 10.1007/s00010-017-0476-9
  • [18] Patrício P, Hartwig RE. The link between regularity and strong-pi-regularity. Journal of the Australian Mathematical Society 2010; 89: 17-22. doi: 10.1017/S1446788710001448
  • [19] Wang Z. A class of Drazin inverses in rings. Filomat 2017; 31: 1781-1789.
  • [20] Wang Z, Chen JL. Pseudo Drazin inverses in associative rings and Banach algebras. Linear Algebra and its Applications 2012; 437: 1332-1345. doi: 10.1016/j.laa.2012.04.039
  • [21] Wei YM, Deng CY. A note on additive results for the Drazin inverse. Linear Multilinear Algebra 2011; 59: 1319-1329. doi: 10.1080/03081087.2010.496110
  • [22] Ying ZL, Koşan T, Zhou YQ. Rings in which every element is a sum of two tripotents. Canadian Mathematical Bulletin 2016; 59: 661-672. doi: 10.4153/CMB-2016-009-0
  • [23] Zeng QP, Wu ZW, Wen YX. New extensions of Cline’s formula for generalized inverses. Filomat 2017; 31: 1973-1980.
  • [24] Zeng QP, Zhong HJ. New results on common properties of the products AC and BA. Journal of Mathematical Analysis and Applications 2015; 427: 830-840. doi: 10.1016/j.jmaa.2015.02.037
  • [25] Zhuang GF, Chen JL, Cui J. Jacobson’s lemma for the generalized Drazin inverse. Linear Algebra and its Applications 2012; 436: 742-746. doi: 10.1016/j.laa.2011.07.044
  • [26] Zhuang GF, Chen JL, Cvetković-Ilić DS, Wei YM. Additive property of Drazin invertibility of elements in a ring. Linear Multilinear Algebra 2012; 60: 903-910. doi: 10.1080/03081087.2011.629998
  • [27] Zou HL, Chen JL, Li TT, Gao YF. Characterizations and representations of the inverse along an element. Bulletin of the Malaysian Mathematical Sciences Society 2018; 41: 1835-1857. doi: 10.1007/s40840-016-0430-3