Padovan and Pell-Padovan Octonions

Padovan and Pell-Padovan Octonions

In this paper, we define the Padovan and Pell-Padovan octonions by using the Padovan and PellPadovan numbers. We give the generating functions, Binet’s formulas, sums formulas and some properties forthese octonions. We also present the matrix representations of the Padovan and Pell-Padovan octonions.

___

  • [1] Akkus, I., Kec¸ilioglu, O., Split Fibonacci and Lucas octonions, Adv. Appl. Clifford Algebras, 25(3)(2015), 517–525.
  • [2] Baez, J., The octonions, Bull. Amer. Math. Soc., 39(2)(2002), 145–205.
  • [3] Catarino, P., The modified Pell and the modified k-Pell quaternions and octonions, Adv. Appl. Clifford Algebras, 26(2016), 577–590.
  • [4] Cerda-Morales, G., On a generalization of Tribonacci Quaternions, Mediterr. J. Math., 14:239(2017), 1–12.
  • [5] Cimen, C.B., İpek, A., On Pell quaternions and Pell–Lucas quaternions, Adv. Appl. Clifford Algebras, 26(1)(2016), 39–51.
  • [6] Cimen, C.B., İpek, A., On Jacobsthal and Jacobsthal–Lucas octonions, Mediterr. J. Math., 14(37)(2017), 13p.
  • [7] Culbert, C., Cayley-Dickson algebras and loops, Journal of Generalized Lie Theory and Applications, 1(1)(2007), 1–17.
  • [8] Horadam, A.F., Complex Fibonacci numbers and Fibonacci quaternions, Am. Math. Month., 70(1963), 289–291.
  • [9] Keçilioğlu, O., Akkuş, I., The Fibonacci Octonions, Adv. Appl. Clifford Algebra, 25(2015), 151–158.
  • [10] Kritsana, S., Matrices formula for Padovan and Perrin sequences, Applied Mathematics Science, 7(142)(2013), 7093–7096.
  • [11] Koshy, T., Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
  • [12] Koshy, T., Fibonacci, Lucas and Pell numbers and Pascal’s triangle, Math. Spectrum, 43(2011), 125–132.
  • [13] Serodio, R., ˆ On octonionic polynomials, Adv. Appl. Clifford Algebras, 17(2)(2007), 245–258
  • [14] Tian, Y., Matrix representations of octonions and their applications, Adv. Appl. Clifford Algebras, 10(1)(2000), 61–90.