Vector-Valued Weighted Sobolev Spaces with Variable Exponent

Vector-Valued Weighted Sobolev Spaces with Variable Exponent

Our aim is to introduce the vector-valued weighted variable exponent Lebesgue spaces. We discusstwo different type of Holder inequalities in this spaces. We will also show that every elements of vector-valued ¨weighted variable exponent Lebesgue spaces are locally integrable. Hence we can define vector-valued weightedvariable exponent Sobolev spaces. Finally under some conditions we will investigate some basic properties ofvector-valued weighted variable exponent Sobolev spaces.

___

  • [1] Amann, H., Linear and Quasilinear Parabolic Problems, Vol. I: Abstract Linear Theory, Birkhauser, Basel, 1995.
  • [2] Amann, H., Operator-valued Fourier multipliers, vector-valued Besov spaces and applications, Math. Nachr., 186(1997), 5–56.
  • [3] Aydın, I., Weighted variable Sobolev spaces and capacity, J Funct Space Appl, 2012(2012), Article ID 132690, 17 pages, doi:10.1155/2012/132690.
  • [4] Cartan, H., Differential calculus, Hermann, Paris-France, 1971.
  • [5] Cheng, C., Xu, J., Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent, J Math Inequal, 7(3)(2013), 461–475.
  • [6] Cruz-Uribe, D., Fiorenza, A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis (Applied and Numerical Harmonic Analysis), Birkhauser /Springer, Heidelberg, 2013.
  • [7] Diening, L., Maximal function on generalized Lebesgue spaces Lp(.) , Math. Inequal. Appl., 7(2)(2004), 245–253.
  • [8] Diening, L., Harjulehto, P., Hast o, P., Ruzicka, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011.
  • [9] Diestel, J., UHL, J.J., Vector measures, Amer Math Soc, 1977.
  • [10] Edmunds, E., Fiorenza, A., Meskhi, A., On a measure of non-compactness for some classical operators, Acta Math. Sin., 22(6)(2006), 1847–1862.
  • [11] Konig, H., Eigenvalue Distribution of Compact Operators, Birkhauser, Basel, 1986.
  • [12] Kovacik, O., Rakosnik, J., On spaces Lp(x) and Wk,p(x) , Czech. Math. J., 41(116)(1991), 592–618.
  • [13] Pietsch, A., Eigenvalues and S-numbers, Cambridge Univ. Press, Cambridge, 1987.
  • [14] Pruss, J., Evolutionary Integral Equations and Applications, Birkhauser, Basel, 1993.