Determinants and Permanents of Hessenberg Matrices with Fibonacci-Like Sequences
Determinants and Permanents of Hessenberg Matrices with Fibonacci-Like Sequences
In this paper, we consider Hessenberg matrices and Fibonacci-Like sequences that is defined by therecurrence relation Tn = Tn−1 + Tn−2, n ≥ 2 and T0 = m, T1 = m where m is a fixed positive integer. We define twon × n Hessenberg matrices with applications to the Fibonacci-Like sequences and investigate the determinantal andpermanental properties. We obtain that the determinants and permanents of these Hessenberg matrices are equal tothe nth term of Fibonacci-Like sequences.
___
- [1] Brualdi, R., Gibson, P., Convex polyhedra of doubly stochastic matrices. I. Applications of the permanent function, J. Comb. Theory, 22(2)(1977), 194–230.
- [2] Cahill, N.D., D’Errico, J.R., Narayan, D.A., Narayan, J.Y., Fibonacci determinants, College Math. J., 33(3)(2002), 221–225.
- [3] Gülec¸, H.H., Permanents and determinants of tridiagonal matrices with (s, t)-Pell Lucas numbers, International Journal of Mathematical Analysis, 11(23)(2017), 1117–1122.
- [4] Kaygısız, K., Sahin, A., Determinant and permanent of Hessenberg matrices and Fibonacci type numbers, Gen. Math. Notes, 9(2)(2012), 32–41.
- [5] Kılıc, E., Tas¸c¸ı, D., On the permanents of some tridiagonal matrices with applicationsto the Fibonacci and Lucas numbers, Rocky Mt. J. Math., 37(2007), 1953–1969.
- [6] Koshy, T., Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
- [7] Koshy, T., Fibonacci, Lucas and Pell numbers, and Pascal’s triangle, Math. Spectrum, 43(2011), 125–132.
- [8] Lee, G.Y., k-Lucas numbers and associated bipartite graphs, Linear Algebra Appl., 320(2000), 51–61.
- [9] Minc, H., Permanents, Encyclopedia Math. Appl., 6, London: Addison-Wesley Publishing Company, 1978.
- [10] Morteza, E., More on the Fibonacci sequence and Hessenberg matrices, Integers, 6(2006), A32.
- [11] Ocal, A.A., Tuglu, N., Altinisik, E., On the representation of k-generalized Fibonacci and Lucas numbers, Appl. Math. Comput., 170(1)(2005), 584–596.
- [12] Serre, D., Matrices: Theory and Applications, New York: Springer Verlag, 2002.
- [13] Singh, B., Sikhwal O., Bhatnagar, S., Fibonacci-like sequence and its properties, Int. J. Contemp. Math. Sciences, 5(18)(2010), 859–868.
- [14] Strang, G., Introduction to Linear Algebra, 2nd Ed., Wellesley MA, Wellesley-Cambridge, 1998.
- [15] Tas¸yurdu, Y., On generalized Fibonacci-like sequences by Hessenberg matrices, International Journal of Mathematics Trends and Technology, 64(1)(2018), 51-58.
- [16] Tas¸yurdu, Y., C¸ obanoglu N., Dilmen Z., On the a new family of k-Fibonacci numbers, Erzincan University Journal of Science and Technology, 9(1)(2016), 95–101.
- [17] Taşyurdu, Y., Gültekin I, Determinantal and permanental representation of q-Fibonacci polynomials, Qscience Connect, 25(2014), 5p.
- [18] Wani, A.A., Sikhwal, O.P., Sisodiya, K., Relations among Fibonacci, Lucas and Fibonacci-like sequences, International Journal of Recent Trends in Engineering & Research, 2(9)(2016), 125–136.
- [19] Yılmaz, F., Bozkurt, D., Hessenberg matrices and the Pell and Perrin numbers, J. Number Theory., 131(2011), 1390–1396.