Teknolojik Gelişmeler Kapsamında Gemi Pervane Tipleri ve Enerji Tasarruf Cihazlarının Sınıflandırılması

Sevk sistemi ve bileşenlerinin, yeni inşaların veya güçlendirmenin gerçekleştirildiği uygulamalarda deniz taşıtlarının mümkün olduğunca verimli çalışması için kapsamlı bir şekilde analiz edilmesi ve optimize edilmesi gerekir. Çoğu deniz taşıtının ana itme kaynağı olan gemi makinelerinden pervaneye güç aktarımı bileşenindeki dişli kutuları, yataklar ve diğer aktarma ekipmanları çeşitli kayıplara neden olmaktadır. Sevk verimini en üst düzeye çıkarmak için pervane seçimi tam olarak gemi tipine, operasyon moduna ve alana göre yapılmalıdır. Pervane verimliliği, yakıt tüketimi, sağlamlık, güvenilirlik, emisyonlar, titreşim, kavitasyon, karmaşıklık ve maliyetler hem geleneksel pervanelerde hem de en son teknoloji pervane sistemlerinde incelenmektedir. Bu çalışma, deniz taşımacılığının sürdürülebilirliği için itme verimliliği kritik öneme sahip olduğundan, akademisyenlere, uzmanlara ve sektör paydaşlarına deniz taşıtları için hangi pervane tipinin daha verimli olacağını belirlemede yol gösterici olacaktır.

Classification of Ship Propeller Types and Energy-Saving Devices Under Technology Developments

The propulsion system and its components need to be thoroughly analyzed and optimized for marine vessels to operate as efficiently as possible in applications where new builds or retrofitting are performed. Gearboxes, bearings, and other transmission equipment in the component of the power transmission from ship engine, which is the primary source of propulsion for most marine vessels, to propeller cause a variety of losses. To maximize propulsive efficiency, propeller selection should be performed precisely on the basis of ship type, operation mode, and area. Propulsion efficiency, fuel consumption, robustness, reliability, emissions, vibration, cavitation, complexity and cost are investigated in both conventional propellers and cutting-edge technology in propeller systems. This study will guide academicians, experts, and sector stakeholders in determining which propeller type will be more efficient for marine vessels since propulsion efficiency is critical for the sustainability of maritime transportation.

___

  • ABB, Azipod electric propulsion, (2022). Accessed Date: 17.04.2022, https://new.abb.com/marine/systems-and-solutions/azipod#large is retrieved
  • Abramowski, T., Żelazny, K., & Szelangiewicz, T., (2010). Numerical analysis of influence of ship hull form modification on ship resistance and propulsion characteristics Part III Influence of hull form modification on screw propeller efficiency. Polish Maritime Research, 17(1 (63)), 10-13. doi: 10.2478/v10012-008-0060-2
  • Anda, M., Iwasaki, Y., Ebira, K., (2011). Development of Overlapping Propellers. マリンエンジニアリング, 46(3), 320-325. doi: 10.5988/jime.46.320
  • ATZ Martec, Controllable Pitch Propellers (CPP), (2021). Accessed Date: 17.04.2022, https://atzmartec.com/wp-content/uploads/2021/07/AtZ-Brochure.pdf is retrieved
  • Bahatmaka, A., Kim, D. J., Chrismianto, D., Setiawan, J. D., Prabowo, A. R., 2017. Numerical investigation on the performance of ducted propeller. In MATEC Web of Conferences (Vol. 138, p. 07002). EDP Sciences.
  • Becker Marine Systems, Products, (2022). Accessed Date: 17.09.2022, https://www.becker-marine-systems.com/files/content/pdf/product_pdf/Becker_Product_Brochure.pdf is retrieved
  • Bertram, V. (2012). Practical Ship Hydromechanics. Second Edition, London, Elsevier.
  • Bhattacharyya, A., Krasilnikov, V., Steen, S., (2016). Scale effects on open water characteristics of a controllable pitch propeller working within different duct designs. Ocean Engineering, 112, 226-242. doi: 10.1016/j.oceaneng.2015.12.024
  • Carlton, J. (2018). Marine propellers and propulsion. Oxford, Butterworth-Heinemann.
  • Çelik, F., Özel Sevk Sistemleri, (2010). Accessed Date: 12.09.2022, https://drive.google.com/file/d/1Sanv3Y9HCeCbM6NSxSPRmPEv7leT20jw/view is retrieved
  • DNV, Cutting-edge asymmetric stern design, (2022). Accessed Date: 17.04.2022, https://www.dnv.com/maritime/advisory/asymmetric-stern-service.html is retrieved
  • DTU Mechanical Engineering, KAPPEL Propeller. (2017). Accessed Date: 11.06.2022, https://www.mek.dtu.dk/english/Research/Feature_Articles/KAPPEL_Propeller is retrieved
  • Falzarano, J. (2018). Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power. London, Cambridge University Press
  • Ganesan, V. (2012). Internal combustion engines. New Delhi: McGraw Hill Publishing Company
  • Gennaro, G., Gonzalez-Adalid, J., (2012). Improving the propulsion efficiency by means of contracted and loaded tip (CLT) propellers. Soc. Nav. Archit. Mar. Eng.
  • Gharbi, S., Zaoui, C., Bouaicha, H., Nejim, S., Dallagi, H., 2018. Ship electric propulsion system: Electric power estimation and propeller selection. In 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET) (pp. 241-248). IEEE, Hammamet, Tunisia.
  • Hanninen, S., Viherialehto, S., Heideman, T., Maattanen, P., Arslan, A., 2023. Results From The World's Largest Arctic Ships and Advancements of Propulsion Technology. In SNAME Offshore Symposium
  • Howden. Alternative Methods to Reduce Resistance and Improve Propulsion, (2019). Accessed Date: 11.03.2022, https://www.howden.com/en-gb/articles/marine/reducing-fuel-consumption-in-shipping is retrieved
  • Hydrocomp. A Hydrocomp Technical Report, (2007). Accessed Date: 18.12.2022, https://www.hydrocompinc.com/wp-content/uploads/documents/HC135-BladeAreaRatio.pdf is retrieved
  • Kirmizi, M. (2015). Modeling and analysis of an in-line pump jet thruster for swimming robots. PhD. Thesis, Rice University
  • Kolakoti, A., Bhanuprakash, T. V. K., Das, H. N., (2013). CFD analysis of controllable pitch propeller used in marine vehicle. Global Journal of Engineering Design and Technology, 2(5), 25-33.
  • Kongsberg. Fixed pitch propellers, (2009). Accessed Date: 11.11.2022, https://www.kongsberg.com/contentassets/cc7a12403dda41d9934f7f259286e432/02.propeller_2p_14.10.09.pdf is retrieved
  • Kongsberg. Azimuth thrusters, (2021). Accessed Date: 01.07.2023, https://www.kongsberg.com/contentassets/830f65761a9b4307ac32c10d35236243/36.azimuth-4p-22.04.21.pdf is retrieved
  • Koronowicz, T., Krzemianowski, Z., Tuszkowska, T., (2010). A complete design of tandem co-rotating propellers using the new computer system. Polish maritime research, 17-25. doi: 10.2478/v10012-010-0031-2
  • Kortpropulsion, Kort Nozzles & Propellers, (2022). Accessed Date: 12.14.2022, https://www.kortpropulsion.com/products/kort-nozzles is retrieved
  • Kuiken, K. (2017). Diesel engines: for ship propulsion and power plants: from 0 to 100,000 kW. Onnen, Target Global Energy Training.
  • Lim, S. S., Kim, T. W., Lee, D. M., Kang, C. G., Kim, S. Y., (2014). Parametric study of propeller boss cap fins for container ships. International Journal of Naval Architecture and Ocean Engineering, 6(2), 187-205. doi: 10.2478/IJNAOE-2013-0172
  • MAN Diesel Turbo, MAN Alpha Kappel tip-fin propellers ordered for the world’s largest car carriers, (2022). Accessed Date: 21.09.2022, https://mandieselturbo.com/docs/default-source/shopwaredocuments/propeller-aft-ship---man-alpha-kappel-tip-fin-propellers.pdf?sfvrsn=2 is retrieved
  • MAN-ES. FPPs – long-haul propulsion at the lowest operational costs, (2022). Accessed Date: 23.09.2022, https://www.man-es.com/marine/products/propeller-aft-ship/fpp is retrieved
  • Manngård, M., Koene, I., Lund, W., Haikonen, S., Fagerholm, F. A., Wilczek, M., Toivonen, H. T. (2022). Torque estimation in marine propulsion systems. Mechanical Systems and Signal Processing, 172, 108969.
  • Michigan Wheel, Propeller Geometry: Terms and Definitions, (2000). Accessed Date: 09.09.2022, http://navalex.com/downloads/Michigan_Wheel_Propeller_Geometry.pdf is retrieved
  • Misra, S. C., Gokarn, R. P., Sha, O. P., Suryanarayana, C., Suresh, R. V., (2012). Development of a four-bladed surface piercing propeller series. Naval engineers journal, (124), 4.
  • Mizzi, K., Demirel, Y. K., Banks, C., Turan, O., Kaklis, P., Atlar, M., (2017). Design optimisation of Propeller Boss Cap Fins for enhanced propeller performance. Applied Ocean Research, 62, 210-222. doi: 10.1016/j.apor.2016.12.006
  • MOL, Energy-Saving Propeller Boss Cap Fins System Reaches Major Milestone, (2015). Accessed Date: 12.11.2022, https://www.mol.co.jp/en/pr/2015/15033.html is retrieved
  • Molland, A. F., Turnock, S. R., Hudson, D. A. (2017). Ship resistance and propulsion. Cambridge university press.
  • Molland, A. F. (2008). Marine engines and auxiliary machinery. The maritime engineering reference book: a guide to ship design, construction and operation. New Yor, Elsevier.
  • Nouri, N. M., Mohammadi, S., Zarezadeh, M., (2018). Optimization of a marine contra-rotating propellers set. Ocean Engineering, 167, 397-404. doi: doi.org/10.1016/j.oceaneng.2018.05.067
  • Roh, M. Innovative Ship and Offshore Plant Design, (2016). Accessed Date: 08.09.2022, https://ocw.snu.ac.kr/sites/default/files/NOTE/07-ISOD Propeller%20&%20Main%20Engine%20Selection(160213).pdf is retrieved
  • Ren, H., Ding, Y., Sui, C., (2019). Influence of EEDI (Energy Efficiency Design Index) on ship–engine–propeller matching. Journal of Marine Science and Engineering, 7(12), 425. doi: 10.3390/jmse7120425
  • Siem, Unique grims vane wheel system the siem curie, (2020). Accessed Date: 17.09.2022, https://siemshipmanagement.pl/content_news/unique-grims-vane-wheel-system-the-siem-curie/ is retrieved
  • Thrustmaster, Z-Drıve Azımuthıng Thrusters, (2013). Accessed Date: 10.07.2023, https://www.thrustmaster.net/wp-content/uploads/2013/12/Z-Drives-for-Inland Towboats-Brochure-2016-page-compressed.pdf is retrieved
  • Tupper, E. C., Rawson, K. J., (2001). Basic Ship Theory. London, Elsevier.
  • Villa, D., Gaggero, S., Tani, G., Viviani, M., (2020). Numerical and experimental comparison of ducted and non-ducted propellers. Journal of Marine Science and Engineering, 8(4), 257. doi: 10.3390/jmse8040257
  • Voith, Voith Schneider Propeller VSP, (2022). Accessed Date: 10.09.2022, https://voith.com/corp-en/drives-transmissions/voith-schneider-propeller-vsp.html is retrieved
  • Warsila, High Performance Nozzle, (2017). Accessed Date: 16.09.2022, https://cdn.wartsila.com/docs/default-source/service-catalogue-files/propulsion-services/brochure-high-performance-nozzle.pdf is retrieved
  • Wartsila, Fixed Pitch Propellers, (2018a). Accessed Date: 12.09.2022, https://cdn.wartsila.com/docs/default-source/product-files/gears-propulsors/propellers/brochure-o-p-propeller-fpp-opti-design.pdf is retrieved
  • Wartsila, Controllable pitch propeller systems (2018b). Accessed Date: 11.09.2022, https://www.wartsila.com/docs/default-source/product-files/gears-propulsors/propellers/brochure-o-p-cpp-propeller-systems.pdf is retrieved
  • Wartsila, Kort nozzle, AZIPOD (Azimuthing Podded Drive), Waterjet propulsion, Voith-Schneider Propulsor (VSP), cycloidal propeller, KAPPEL propeller. (2022). Accessed Date: 18.07.2022, https://www.wartsila.com/encyclopedia/term is retrieved
  • Xiong, Y., Wang, Z., Qi, W., (2013). Numerical study on the influence of boss cap fins on efficiency of controllable-pitch propeller. Journal of Marine Science and Application, 12(1), 13-20. doi: 10.1007/s11804-013-1166-9