SWOT ve AHP (A'WOT) yöntemlerinin birlikte uygulanması: otonom yüzey gemileri çalışması

Artan işletme maliyetleri, büyüyen gemi tonajları, can kayıpları, gemi kazalarında insan faktörünün büyük etkisi gibi nedenler otonom yüzey gemilerinin (MASS) yakın gelecekte kaçınılmaz olarak dünya denizlerinde seyir yapacak olmasını tetikleyen başlıca faktörlerdir. Ancak henüz otonom teknelerle ilgili yeterli uluslararası kanun ve yönetmeliklerin olmayışı, gemi kazaların sonuçlarının büyüklüğünü ve kazanın etkilerini azaltacak ilk müdahaleyi yapacak personel olmayışı, halihazırda otonom gemilerin uluslararası sularda ticari seferler yapmaması nedeniyle mevcut olan belirsizlikler ve otonom gemilere duyulan güvensizlik günümüzde otonom su üstü araçlarının yaygınlaşması önündeki en büyük engellerdir. SWOT analizi ile ele alınan bir durumun ya da konunun güçlü ve zayıf yönlerini keşfetmek, bunlarla ilgili fırsatların farkına varmak ve bu fırsatlardan yararlanmak, tehditleri incelemek ve ortaya çıkabilecek risklere karşı önlem almak mümkün olmaktadır. Bu çalışmada otonom su üstü araçlarının yetenekleri, sundukları fırsatlar, avantajları, doğurabileceği sorunlar, dezavantajları gibi olumlu ve olumsuz yönleri bir bütün olarak ele alınmış, uzman görüşlerine göre geliştirme stratejileri önerilmiştir. Otonom gemilerin yaygın olarak benimsenmesi için gerekli olan stratejik planlamayı kolaylaştırmak amacıyla SWOT analizi ve Analitik Hiyerarşi Süreci (AHP) yöntemleri kullanılmıştır.

Application of combined SWOT and AHP (A’WOT): A case study for maritime autonomous surface ships

Increasing operational costs, the growth in ship tonnage, loss of lives, and the human factor in maritime accidents have driven the inevitable emergence of Maritime Autonomous Surface Ships (MASSs) in the world's seas. However, the universal establishment of laws and regulations for autonomous ships is still pending. Moreover, challenges arise due to the scarcity of personnel for immediate response to mitigate the impact of ship accidents and uncertainties linked to the absence of commercial autonomous voyages in international waters. Utilizing SWOT analysis as a strategic management approach enables the identification of strengths and weaknesses in a situation, awareness of related opportunities for leveraging those strengths, examination of threats, and formulation of measures against potential risks. This study encompasses a comprehensive evaluation of the positive and negative aspects of autonomous surface vehicles, encompassing their capabilities, advantages, challenges, and disadvantages. It employs SWOT analysis and the Analytic Hierarchy Process (AHP) method to facilitate strategic planning necessary for the widespread adoption of autonomous ships.

___

  • Allianz Global Corporate and Specialty SE (AGCS). Safety and Shipping Review 2017, (2017). Accessed: 21.04.2023, https://commercial.allianz.com/news-and-insights/reports/shipping-safety.html is retrieved.
  • Ahvenjärvi, S. (2016). The human element and autonomous ships. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 10(3).
  • Alfheim, H. L., Muggerud, K., Breivik, M., Brekke, E. F., Eide, E., Engelhardtsen, Ø. (2018). Development of a dynamic positioning system for the revolt model ship. IFAC-PapersOnLine, 51(29), 116-121.
  • Burmeister, H., & Bruhn, W. (2015). Designing an autonomous collision avoidance controller respecting COLREG. Maritime-Port Technology and Development, 83-88.
  • Cui, K., Li, H., Jing, Y., Liu, L., Wang, D. (2022). Reduced-and Full-order Concurrent Learning Extended State Observers for Fully Adaptive Anti-disturbance Surge Speed Tracking Control of Autonomous Surface Vehicles. IEEE 25th International Conference on Intelligent Transportation Systems (ITSC).
  • Dallolio, A., Agdal, B., Zolich, A., Alfredsen, J. A., Johansen, T. A. (2019). Long-endurance green energy autonomous surface vehicle control architecture. OCEANS 2019 MTS/IEEE, Seattle. David, F. R. (2011). Strategic management concepts and cases. Pearson.
  • David, F. R. (2011). Strategic management concepts and cases. Pearson.
  • Dittmann, K., Hansen, P. N., Papageorgiou, D., Jensen, S., Lützen, M., Blanke, M. (2021). Autonomous surface vessel with remote human on the loop: System design for stcw compliance. IFAC-PapersOnLine, 54(16), 224-231.
  • Det Norske Veritas (DNV), G., (2017). The ReVolt. A new inspirational ship concept. Accessed: 21.05.2023, https://www.dnvgl.com/technologyinnovation/revolt/is retrieved.
  • Du, Z., Negenborn, R. R., Reppa, V. (2022). COLREGS-Compliant collision avoidance for physically coupled multi-vessel systems with distributed MPC. Ocean Engineering, 260, 111917.
  • Evensen, M. H. (2020). Safety and security of autonomous vessels. Based on the Yara Birkeland project. Master Thesis. The University of Bergen.
  • Harati-Mokhtari, A., Wall, A., Brookes, P., Wang, J. (2007). Automatic Identification System (AIS): a human factors approach. Journal of Navigation, 60(3), 373-389.
  • Hetherington, C., Flin, R., Mearns, K. (2006). Safety in shipping: The human element. Journal of safety research, 37(4), 401-411.
  • Issa, M., Ilinca, A., Ibrahim, H., Rizk, P. (2022). Maritime Autonomous Surface Ships: Problems and Challenges Facing the Regulatory Process. Sustainability, 14(23), 15630.
  • Jessee, M. S., Chiou, T., Krepps, A. S., Prengaman, B. R. (2017). A gaze based operator instrumentation approach for the command of multiple autonomous vehicles. IEEE Conference on Control Technology and Applications (CCTA).
  • Jin, K., Wang, H., YI, H., Liu, J., Wang, J. (2018). Key technologies and intelligence evolution of maritime UV. Chinese Journal of Ship Research, 13(6), 1-8.
  • Kaminski, D. (2016). Who’s to blame when no one is manning the ship: JDSupra.
  • Laurinen, M. (2016). Remote and autonomous ships: The next steps. AAWA Adv Auton Waterborne Appl, 88.
  • Laurinen, M. (2019). Advanced Autonomous Waterborne Applications Initiative AAWA, AAWA Seminar–Helsinki, Finland.
  • Li, S., Fung, K. (2019). Maritime autonomous surface ships (MASS): implementation and legal issues. Maritime Business Review, 4(4), 330-339.
  • Li, X., Yuen, K. F. (2022). Autonomous ships: A study of critical success factors. Maritime Economics & Logistics, 24(2), 228-254.
  • Mahapatra, D., Katiyar, R., Parida, R., Kumar, D. (2021). A fuzzy multi-criteria approach for evaluating the contribution of freight transportation towards India’s Nationally Determined Contributions (NDCs). International Journal of Production Research, 59(9), 2857-2884.
  • Mokhtari, A., Khodadadi, H. (2013). An Empirical Survey on the Role of Human Error in Marine Incidents. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 7(3).
  • Munim, Z. H., & Haralambides, H. (2022). Advances in maritime autonomous surface ships (MASS) in merchant shipping. Maritime Economics & Logistics, 24(2), 181-188.
  • Maritime Unmanned Navigation through Intelligence in Networks, MUNIN. Research in Maritime Autonomous Systems Project Results and Technology Potentials, (2016). Accessed: 28.04.2023, http://www.unmannedship.org/munin/wp-content/uploads/2016/02/MUNIN-final-brochure.pdf is retrieved.
  • Nippon Yusen Kaisha (NYK), (2019). NYK conducts world’s first maritime autonomous surface ships trial. Accessed: 27.04.2023, https://www.nyk.com/english/news/2019/20190930_01.html is retrieved
  • O’Neil, W. A. (2003). The human element in shipping: Springer.
  • Pedrozo, R. P. (2019). US employment of marine unmanned vehicles in the South China Sea The South China Sea (pp. 217-229): Routledge.
  • Perera, L. P., Guedes Soares, C. (2009). Autonomous guidance and navigation based on the COLREGs rules and regulations of collision avoidance. Advanced Ship Design for Pollution Prevention.
  • Porathe, T. (2017). Is COLREG enough? Interaction between manned and unmanned ships. Marine Navigation: Conference Proceedings 12th International Conference on Marine Navigation and Safety of Sea Transportation, TransNav 2017.
  • Ramos, M. A., Thieme, C. A., Utne, I. B., Mosleh, A. (2020). Human-system concurrent task analysis for maritime autonomous surface ship operation and safety. Reliability Engineering & System Safety, 195, 106697.
  • Ringbom, H. (2019). Regulating autonomous ships—concepts, challenges and precedents. Ocean Development & International Law, 50(2-3), 141-169.
  • Rødseth, N., Nordahl, H. (2017). Definition of autonomy levels for merchant ships. Norwegian Forum for Autonomous Ships (NFAS) Conference.
  • Rothblum, A. M. (2000). Human error and marine safety. National Safety Council Congress and Expo, Orlando, FL.
  • Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical modelling, 9(3-5), 161-176.
  • Shinno, H., Yoshioka, H., Marpaung, S., Hachiga, S. (2006). Quantitative SWOT analysis on global competitiveness of machine tool industry. Journal of engineering design, 17(03), 251-258.
  • Shrestha, R. K., Alavalapati, J. R., Kalmbacher, R. S. (2004). Exploring the potential for silvopasture adoption in south-central Florida: an application of SWOT–AHP method. Agricultural systems, 81(3), 185-199.
  • Stateczny, A., Gierlowski, K., Hoeft, M. (2022). Wireless local area network technologies as communication solutions for unmanned surface vehicles. Sensors, 22(2), 655.
  • Ugurlu, H., Cicek, I. (2022). Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis. Ocean Engineering, 245, 110514.
  • Utne, I. B., Sørensen, A. J. Schjølberg, I. (2017). Risk management of autonomous marine systems and operations. ASME 36th International Conference on Ocean, Offshore and Arctic Engineering, 2017. American Society of Mechanical Engineers Digital Collection.
  • Utne, I. B., Rokseth, B., Sørensen, A. J., Vinnem, J. E. (2020). Towards supervisory risk control of autonomous ships. Reliability Engineering & System Safety, 196, 106757.
  • Veal, R., Tsimplis, M., Serdy, A. (2019). The legal status and operation of unmanned maritime vehicles. Ocean Development & International Law, 50(1), 23-48.
  • Wang, K., Li, J., Xu, M., Chen, Z., Wang, J. (2022). LiDAR-Only Ground Vehicle Navigation System in Park Environment. World Electric Vehicle Journal, 13(11), 201.
  • Wróbel, K., Montewka, J., Kujala, P. (2017). Towards the assessment of potential impact of unmanned vessels on maritime transportation safety. Reliability Engineering & System Safety, 165, 155-169.
  • Wu, H., Wu, Y., Sun, X., Liu, J. (2020). Combined effects of acoustic, thermal, and illumination on human perception and performance: A review. Building and Environment, 169, 106593.
  • Yang, C., Zhao, Y., Cai, X., Wei, W., Feng, X., Zhou, K. (2023). Path Planning Algorithm for Unmanned Surface Vessel Based on Multiobjective Reinforcement Learning. Computational Intelligence and Neuroscience, 2023.
  • Yang, S., Li, L., Suo, Y., Chen, G. (2007). Study on construction of simulation platform for vessel automatic anti-collision and its test method. IEEE International Conference on Automation and Logistics.
  • Yara, I. (2021). Yara to start operating the world’s first fully emission-free container ship. Accessed: 05.05.2023, https://www.yara. com/corporate-releases/yara-to-start-operating-the-worlds-first-fully-emission-free-container-ship/ is retrieved
  • Yildiz, S., Uğurlu, Ö., Wang, J., Loughney, S. (2021). Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents. Reliability Engineering & System Safety, 208, 107395.
  • Yuan, W., Gao, P. (2022). Model Predictive Control-Based Collision Avoidance for Autonomous Surface Vehicles in Congested Inland Waters. Mathematical Problems in Engineering, 2022.
  • Zanella, T. V. (2020). The Environmental Impacts of the" Maritime Autonomous Surface Ships"(MASS). Veredas do Direito, 17, 367.
  • Zhang, M., Zhao, D., Sheng, C., Liu, Z., Cai, W. (2023). Long-Strip Target Detection and Tracking with Autonomous Surface Vehicle. Journal of Marine Science and Engineering, 11(1), 106.
  • Zhou, X.-Y., Liu, Z.-J., Wang, F.-W., Ni, S.-K. (2018). Collision risk identification of autonomous ships based on the synergy ship domain. Chinese Control and Decision Conference (CCDC).