Güneş Enerjili Bir Teknenin Enerji Tüketimi Üzerinde Form Tasarımı ve İşletme Faktörlerinin Etkileri: Bir Sistem Dinamiği Yaklaşımı

Bu araştırma makalesi, güneş enerjisiyle çalışan bir tekne tasarlamayı ve çevresel ve biçimle ilgili faktörlerin güç tüketimi ve batarya süresi üzerindeki etkilerini sistem dinamiği yaklaşımına dayalı bir simülasyon kullanarak analiz etmeyi amaçlamaktadır. Tekne formu, kayma gövdesi olarak tasarlanmış ve gövde direnci analizi Maxsurf paket programında yapılmıştır. 548 W güç çıkışına sahip PV paneller ve 4660 Wh kapasiteli iki adet pil paketi, 10 kW nominal güç çıkışına sahip bir elektrik motorunu çalıştırmak için gövde gövdesine yerleştirilmiştir. Güneş enerjisi sistemi verimliliğini artırmak için sistemde iki adet MPPT kullanılmıştır. Tüm sistem bileşenleri arasındaki ilişkiler, farklı koşullar altında pil dayanıklılık değişikliklerini gözlemlemek için Vensim yazılımında modellenmiştir. Sonuçlar, tasarlanan tekne için ideal tekne hızının yaklaşık 8 saat batarya kullanım süresi ile 7 knot hesaplandığını göstermiştir. %40 şarj durumu seyir için kritik bir olarak belirlenmiştir, çünkü hız 5 m/s (9,72 knot) sabit tutularak %40 seviyesinde 1,63 saat seyir süresi sağlanabilmektedir. Teknenin artan trim açısı akünün deşarj süresini kısaltmaktadır ve trim açısı olmadan seyir tekne için en etkili kullanım olarak belirlenmiştir.

Impacts of the Form Design and Operational Factors on the Energy Consumption of a Solar-Powered Boat: A System Dynamics Approach

This research paper aims to design a solar-powered boat and analyze the effects of environmental and form-related factors on power consumption and battery duration by utilizing a system dynamics approach-based simulation. The boat form is designed as the planing hull and its hull resistance analysis was ensured in Maxsurf package program. PV panels with 548 W power output and two battery packs with 4660 Wh capacity were placed on the hull body to employ an electric motor with a 10-kW nominal power output. Two MPPTs were implemented in the system to increase solar system efficiency. The relationships between all system components were modelled in Vensim software to observe battery endurance changes under different conditions. Results demonstrated that the ideal vessel speed is calculated to be around 7 knots with roughly 8 hours of battery duration for the designed boat. A critical stage of charge for sailing is 40% since 1.63 hours of cruising time may be achieved while maintaining a speed of 5 m/s (9.72 knots). Indeed, the boat’s rising trim angle shortens the battery discharge time; thus, navigation by no trim angle is the most effective usage for the vessel.

___

  • Aijjou, A., Bahatti, L., Raihani, A., (2019). Influence of Solar Energy on Ship Energy Efficiency: Feeder Container Vessel as Example. International Journal of Electrical Energy, 7(1), 21–25. doi:10.18178/ijoee.7.1.21-25
  • Anand, S., Vrat, P., Dahiya, R. P., (2006). Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. Journal of Environmental Management, 79(4), 383–398. doi:10.1016/j.jenvman.2005.08.007.
  • Aslani, A., Helo, P., Naaranoja, M., (2014). Role of renewable energy policies in energy dependency in Finland: System dynamics approach. Applied Energy, 113, 758–765. doi:10.1016/j.apenergy.2013.08.015.
  • Balsamo, F., Capasso, C., Miccione, G., Veneri, O., (2017). Hybrid Storage System Control Strategy for All-Electric Powered Ships. Energy Procedia, 126, 1083–1090. doi:10.1016/j.egypro.2017.08.242.
  • Banjarnahor, D. A., Hanifan, M., Budi, E. M., (2017). Design of Hybrid Solar and Wind Energy Harvester for Fishing Boat. IOP Conference Series: Earth and Environmental Science, 75(1), 0–7. doi:10.1088/1755-1315/75/1/012007.
  • Baskoro, F. R., Takahashi, K., Morikawa, K., Nagasawa, K., (2021). System dynamics approach in determining coal utilization scenario in Indonesia. Resources Policy, 73(September 2020), 102209. doi:10.1016/j.resourpol.2021.102209.
  • Bentley, What is MAXSURF?, (2022). Accessed Date: 22.03.2023, https://www.bentley.com/software/maxsurf/ is retrieved.
  • Cedar Lake Ventures, İzmir Bölgesinde Yıl Boyu İklim ve Hava Durumu, (2022). Accessed Date: 06.12.2022, https://tr.weatherspark.com/y/94320/İzmir-Türkiye-Ortalama-Hava-Durumu-Yıl-Boyunca is retrieved.
  • Chao, R. M., Lin, H. K., Wu, C. H., 2018. Solar-powered boat design using standalone distributed PV system. Proceedings of 4th IEEE International Conference on Applied System Innovation 2018, ICASI 2018, 31–34. doi:10.1109/ICASI.2018.8394259.
  • Connelly, E., Idini, B., International Shipping, (2022). Accessed Date: 05.12.2022,. https://www.iea:reports/international-shipping is retreived.
  • Cupelli, M., Ponci, F., Sulligoi, G., Vicenzutti, A., Edrington, C. S., El-Mezyani, T., Monti, A., (2015). Power Flow Control and Network Stability in an All-Electric Ship. Proceedings of the IEEE, 103(12), 2355–2380. doi:10.1109/JPROC.2015.2496789.
  • Daneshgar, S., Zahedi, R., (2022). Investigating the hydropower plants production and profitability using system dynamics approach. Journal of Energy Storage, 46(December 2021), 103919. doi:10.1016/j.est.2021.103919.
  • Dincer, I., (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157–175. doi:10.1016/S1364-0321(99)00011-8.
  • Dutta, W., Ankan, S. T., Khan, M. Z. R., 2020. Design of a sustainable electric boat with renewable energy based charging system. Proceedings of 2020 11th International Conference on Electrical and Computer Engineering, ICECE 2020, 242–245. doi:10.1109/ICECE51571.2020.9393125.
  • Eftekhari Shahabad, M., Mostafaeipour, A., Hosseini Nasab, H., Sadegheih, A., Ao Xuan, H., (2022). A new model to investigate effects of subsidies for home solar power systems using system dynamics approach: A case study. Sustainable Energy Technologies and Assessments, 49(November 2021), 101706. doi:10.1016/j.seta.2021.101706.
  • Ellenbogen, J.C., Christopher L.J., (2000). Architectures for molecular electronic computers: 1. Logic structures and an adder designed from molecular electronic diodes. Proceedings of the IEEE, 88(3), 386–426. doi:10.1109/5.838115.
  • Eronat, C., (2017). An overview on İzmir Bay physical oceanography. Ege Journal of Fisheries and Aquatic Sciences, 34(1), 1–9. doi:10.12714/egejfas.2017.34.1.01.
  • Esmaieli, M., Ahmadian, M., (2018). The effect of research and development incentive on wind power investment, a system dynamics approach. Renewable Energy, 126, 765–773. doi:10.1016/j.renene.2018.04.009.
  • Eyring, V., Köhler, H. W., Van Aardenne, J., Lauer, A., (2005). Emissions from international shipping: 1. The last 50 years. Journal of Geophysical Research D: Atmospheres, 110(17), 171–182. doi:10.1029/2004JD005619.
  • Francis, A., Thomas, A., (2022). A framework for dynamic life cycle sustainability assessment and policy analysis of built environment through a system dynamics approach. Sustainable Cities and Society, 76, 103521. doi:10.1016/j.scs.2021.103521.
  • Gaber, M., Hamad, M., El-banna, S., El-Dabah, M., (2021). an Intelligent Energy Management System for Ship Hybrid Power System Based on Renewable Energy Resources. Journal of Al-Azhar University Engineering Sector, 16(60), 712–723. doi:10.21608/auej.2021.187967.
  • Giraldo-Pérez, E., Betancur, E., Osorio-Gómez, G., (2022). Experimental and statistical analysis of the hydrodynamic performance of planing boats: A Comparative study. Ocean Engineering, 262(July 2022), 112227. doi:10.1016/j.oceaneng.2022.112227.
  • Gravelsins, A., Bazbauers, G., Blumberga, A., Blumberga, D., Bolwig, S., Klitkou, A., Lund, P. D., (2018). Modelling energy production flexibility: System dynamics approach. Energy Procedia, 147, 503–509. doi:10.1016/j.egypro.2018.07.060.
  • Gupta, V. K., Potumarthi, R., O’Donovan, A., Kubicek, C. P., Sharma, G. D., Tuohy, M. G., (2014). Bioenergy Research: An Overview on Technological Developments and Bioresources. In Bioenergy Research: Advances and Applications. Elsevier. doi:10.1016/B978-0-444-59561-4.00002-4.
  • Haseltalab, A., Wani, F., Negenborn, R. R., (2022). Multi-level model predictive control for all-electric ships with hybrid power generation. International Journal of Electrical Power and Energy Systems, 135, 107484. doi:10.1016/j.ijepes.2021.107484.
  • Hein, K., Murali, R., Xu, Y., Aditya, V., Gupta, A. K., (2022). Battery thermal performance oriented all-electric ship microgrid modeling, operation and energy management scheduling. Journal of Energy Storage, 48(October 2021), 103970. doi:10.1016/j.est.2022.103970.
  • Hein, K., Xu, Y., Aditya, V., Gupta, A. K., (2022). A probabilistic risk-averse approach for energy storage sizing in all-electric ship. Journal of Energy Storage, 55(PA), 105392. doi:10.1016/j.est.2022.105392.
  • Hjorth, P., Bagheri, A., (2006). Navigating towards sustainable development: A system dynamics approach. Futures, 38(1), 74–92. doi:10.1016/j.futures.2005.04.005.
  • Hoogwijk, M., Graus, W., Global Potential of Renewable Energy Sources: A Literature Assessment, (2008). Accessed Date: 05.12.2022, https://www.academia.edu/download/40266225/Global_Potential_of_Renewable_Energy_Sou20151122-786-1y8t0a9.pdf is retrieved.
  • Ivanov, G., (2022). All-Electric Cargo Ships Data Analysis and Efficiency vs Fuel Ships Comparison. International Journal of Marine Engineering Innovation and Research, 7(1), 33–40. doi:10.12962/j25481479.v7i1.12379.
  • Ivanova, G., (2021). Analysis of the Specifics in Calculating the Index of Existing Marine Energy Efficiency EEXI in Force since 2023. 2021 13th Electrical Engineering Faculty Conference, BulEF 2021. doi:10.1109/BulEF53491.2021.9690805.
  • Jia, S., Liu, X., Yan, G., (2019). Effect of APCF policy on the haze pollution in China: A system dynamics approach. Energy Policy, 125(October 2018), 33–44. doi:10.1016/j.enpol.2018.10.012.
  • Joshi, B. V., Vipin, B., Ramkumar, J., Amit, R. K., (2021). Impact of policy instruments on lead-acid battery recycling: A system dynamics approach. Resources, Conservation and Recycling, 169(August 2020), 105528. doi:10.1016/j.resconrec.2021.105528.
  • Kannan, N., Vakeesan, D., (2016). Solar energy for future world: - A review. Renewable and Sustainable Energy Reviews, 62, 1092–1105. doi:10.1016/j.rser.2016.05.022.
  • Kong, Y., Liu, J., Chen, J., (2022). Exploring the carbon abatement measures in maritime supply chain: a scenario-based system dynamics approach. International Journal of Production Research. doi:10.1080/00207543.2022.2088427.
  • Konur, O., Yuksel, O., Aykut Korkmaz, S., Ozgur Colpan, C., Saatcioglu, O. Y., Koseoglu, B., (2023). Operation-dependent exergetic sustainability assessment and environmental analysis on a large tanker ship utilizing Organic Rankine cycle system. Energy, 262(PA), 125477. doi:10.1016/j.energy.2022.125477.
  • Kulkarni, H. S., Wani, K. V., Sonawane, G. D., Bhoi, C. P., Mahale, M., (2020). Design and Fabrication of Solar Boat. International Research Journal of Engineering and Technology , 07(06), 2968–2973.
  • Kurniawan, A., Shintaku, E., 2018. Control of photovoltaic system connected to DC bus in all-electric ship. Proceeding - ICAMIMIA 2017: International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation, 110–115. doi:10.1109/ICAMIMIA.2017.8387568.
  • Leung, C. P., Cheng, K. W. E., 2018. Zero emission solar-powered boat development. 2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer and Security, PESA 2017, 1–6. doi:10.1109/PESA.2017.8277736.
  • Lewis, E. V., (1998). Principles of naval architecture second revision 2nd Edition. New Jersey, The Society of Naval Architects and Marine Engineers.
  • Lindbergh, E., Ahlstrand, F., (2020). Methods to Predict Hull Resistance in the Process of Designing Electric Boats. M.Sc. Thesis, Kth Royal Institute of Technology.
  • Liu, P., Lin, B., Wu, X., Zhou, H., (2019). Bridging energy performance gaps of green office buildings via more targeted operations management: A system dynamics approach. Journal of Environmental Management, 238, 64–71. doi:10.1016/j.jenvman.2019.02.111.
  • Lutful Kabir, S. M., Alam, I., Rezwan Khan, M., Hossain, M. S., Rahman, K. S., Amin, N., 2017. Solar powered ferry boat for the rural area of Bangladesh. 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering, ICAEES 2016, 38–42. doi:10.1109/ICAEES.2016.7888005.
  • Mobaseri, M., Mousavi, S. N., Haghighi, M. H. M., (2021). Environmental effects of food waste reduction using system dynamics approach. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1–19. doi:10.1080/15567036.2021.2000066.
  • Mueller, M., Wallace, R., (2008). Enabling science and technology for marine renewable energy. Energy Policy, 36(12), 4376–4382. doi:10.1016/j.enpol.2008.09.035.
  • Nasiri, S., Parniani, M., Blaabjerg, F., Peyghami, S., 2022. Analysis of All-Electric Ship Motions Impact on PV System Output Power in Waves. 2022 IEEE Transportation Electrification Conference and Expo, ITEC 2022, 450–455. doi:10.1109/ITEC53557.2022.9813953.
  • Nasirudin, A., Chao, R. M., Utama, I. K. A. P., (2017). Solar powered boat design optimization. Procedia Engineering, 194, 260–267. doi:10.1016/j.proeng.2017.08.144.
  • Nóbrega, J. C. de C., Rössling, A., (2012). Development of solar powered boat for maximum energy efficiency. Renewable Energy and Power Quality Journal, 1(10), 302–307. doi:10.24084/repqj10.299.
  • Obaid, W., Hamid, A. K., Ghenai, C., 2019. Wind-fuel-cell-solar hybrid electric boat power design with MPPT system. 2019 8th International Conference on Modeling Simulation and Applied Optimization, ICMSAO 2019, 8–12. doi:10.1109/ICMSAO.2019.8880330.
  • Ozden, M. C., Demir, E., 2009. The successful design and construction of solar/electric boats Nusrat and Muavenet: An Overview. Ever Monaco 2009 Conferences on Ecological Vehicles and Renewable Energies, Monaco, 27-29.
  • Padwad, D., Naidu, H. K., 2022. A Review of Electrical Boat Vehicle Solar Generation for Energy Sustainability and Development. International Conference on Emerging Trends in Engineering and Technology, ICETET, 2022-April. doi:10.1109/ICETET-SIP-2254415.2022.9791663.
  • Pakhmode, K. H., Dudhe, R. R., Waghmare, G. S., Kamble, D. A., Dhenge, K., (2019). Solar powerd water surface garbage collecting boat. International Research Journal of Engineering and Technology, 3223, 3223–3225.
  • Pan, X., Li, M., Xu, H., Guo, S., Guo, R., Lee, C. T., (2021). Simulation on the effectiveness of carbon emission trading policy: A system dynamics approach. Journal of the Operational Research Society, 72(7), 1447–1460. doi:10.1080/01605682.2020.1740623.
  • Pazi, I., Ozturk, C., (2012). Deniz Suyu Fiziksel Özelliklerinin Ölçülmesi Ve Değerlendirilmesi. Su Ürünleri Akademik Bildiriler Yayım Sistemi, 375–382.
  • Perčić, M., Frković, L., Pukšec, T., Ćosić, B., Li, O. L., Vladimir, N., (2022). Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation. Energy, 251. doi:10.1016/j.energy.2022.123895.
  • Pereira, I. P. C., Ferreira, F. A. F., Pereira, L. F., Govindan, K., Meidutė-Kavaliauskienė, I., Correia, R. J. C., (2020). A fuzzy cognitive mapping-system dynamics approach to energy-change impacts on the sustainability of small and medium-sized enterprises. Journal of Cleaner Production, 256. doi:10.1016/j.jclepro.2020.120154.
  • Pizzitutti, F., Walsh, S. J., Rindfuss, R. R., Gunter, R., Quiroga, D., Tippett, R., Mena, C. F., (2017). Scenario planning for tourism management: a participatory and system dynamics model applied to the Galapagos Islands of Ecuador. Journal of Sustainable Tourism, 25(8), 1117–1137. doi:10.1080/09669582.2016.1257011.
  • Rivera-Solorio, C., García-Cuéllar, A. J., Flores, A., (2013). Design and construction of a boat powered by solar energy with the aid of computational tools. International Journal of Engineering Education, 29(2), 380–387.
  • Saxena, S., Hendricks, C., Pecht, M., (2016). Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges. Journal of Power Sources, 327, 394–400. doi:10.1016/j.jpowsour.2016.07.057.
  • Saral, D., Köse E., (2020) Geleneksel Karadeniz Tipi Balıkçı Gemisinin HAD ile Sakin Sudaki Direnç Analizleri. Turkish Journal of Maritime and Marine Sciences, 6(2), 207-223.
  • Savitsky, D., (1964). Hydrodynamic design of planing hulls. Marine Technology and SNAME News, 1(04), 71-95.
  • Sepasi, S., Ghorbani, R., Liaw, B. Y., (2015). Inline state of health estimation of lithium-ion batteries using state of charge calculation. Journal of Power Sources, 299, 246–254. doi:10.1016/j.jpowsour.2015.08.091.
  • Shadman, S., Chin, C. M. M., Sakundarini, N., Yap, E. H., Fairuz, S., Wong, X. Y., Khalid, P. A., Karimi, F., Karaman, C., Mofijur, M., Koyande, A. K., Show, P. L., (2022). A system dynamics approach to pollution remediation and mitigation based on increasing the share of renewable resources. Environmental Research, 205, 112458. doi:10.1016/j.envres.2021.112458.
  • Sheheryar, M., Rehan, R., Nehdi, M. L., (2021). Estimating CO2 emission savings from ultrahigh performance concrete: A system dynamics approach. Materials, 14(4), 1–22. doi:10.3390/ma14040995.
  • Solangi, K. H., Islam, M. R., Saidur, R., Rahim, N. A., Fayaz, H., (2011). A review on global solar energy policy. Renewable and Sustainable Energy Reviews, 15(4), 2149–2163. doi:10.1016/j.rser.2011.01.007.
  • Spinelli, F., Mancini, S., Vitiello, L., Bilandi, R. N., De Carlini, M., (2022). Shipping Decarbonization: An Overview of the Different Stern Hydrodynamic Energy Saving Devices. Journal of Marine Science and Engineering, 10(5). doi:10.3390/jmse10050574.
  • Stasinopoulos, P., Shiwakoti, N., Beining, M., (2021). Use-stage life cycle greenhouse gas emissions of the transition to an autonomous vehicle fleet: A System Dynamics approach. Journal of Cleaner Production, 278, 123447. doi:10.1016/j.jclepro.2020.123447.
  • Tamunodukobipi, D., Samson, N., Sidum, A., (2018). Design Analysis of a Lightweight Solar Powered System for Recreational Marine Craft. World Journal of Engineering and Technology, 06(02), 441–456. doi:10.4236/wjet.2018.62027.
  • Tercan, Ş. H., Eid, B., Heidenreich, M., Kogler, K., Akyürek, Ö., (2021). Financial and Technical Analyses of Solar Boats as A Means of Sustainable Transportation. Sustainable Production and Consumption, 25, 404–412. doi:10.1016/j.spc.2020.11.014.
  • Ventana Systems, Vensim Software, (2015). Accessed Date: 05.12.2022, https://vensim.com/ is retrieved.
  • Walker, G., (2001). Evaluating MPPT converter topologies using a MATLAB PV model. Journal of Electrical and Electronics Engineering, 21(1), 49–56.
  • Wang, B., Peng, X., Zhang, L., Su, P., (2022). Real time power management strategy for an all-electric ship using a predictive control model. IET Generation, Transmission and Distribution, 16(9), 1808–1821. doi:10.1049/gtd2.12419.
  • Wang, S., Psaraftis, H. N., Qi, J., (2021). Paradox of international maritime organization’s carbon intensity indicator. Communications in Transportation Research, 1(July), 100005. doi:10.1016/j.commtr.2021.100005.
  • Wen, S., Zhao, T., Tang, Y., Xu, Y., Zhu, M., Fang, S., Ding, Z., (2021). Coordinated Optimal Energy Management and Voyage Scheduling for All-Electric Ships Based on Predicted Shore-Side Electricity Price. IEEE Transactions on Industry Applications, 57(1), 139–148. doi:10.1109/TIA.2020.3034290.
  • Ye, F., Xiong, X., Li, L., Li, Y., (2021). Measuring the effectiveness of the Chinese Certified Emission Reduction scheme in mitigating CO2 emissions: A system dynamics approach. Journal of Cleaner Production, 294, 125355. doi:10.1016/j.jclepro.2020.125355.
  • Zhang, H., Xu, X., (2020). Research and design of wind and solar complementary electric sightseeing boat. E3S Web of Conferences, 145, 2019–2021. doi:10.1051/e3sconf/202014502056.
  • Zhao, T., Qiu, J., Wen, S., Zhu, M., (2022). Efficient Onboard Energy Storage System Sizing for All-Electric Ship Microgrids Via Optimized Navigation Routing under Onshore Uncertainties. IEEE Transactions on Industry Applications, 58(2), 1664–1674doi:10.1109/TIA.2022.3145775.
  • Yüksel, O., Göksu, B., Bayraktar, M., (2023). Propulsion and photovoltaic charging system parameter computation for an all-electric boat. Ships and Offshore Structures, 1–14. doi:10.1080/17445302.2023.2195239.