The contribution of capsulated bacteria to the total bacterial community in the water column of the Northern Marmara Sea, Küçükçekmece Lagoon and Strait of Istanbul, Turkey

Kuzey Marmara Denizi kıyısal alanı, Kucukcekmece Lagün'ü ve İstanbul Boğazı'nda seçilen sekiz ayrı istasyonda, deniz suyu örneklerinde, metabolik olarak aktif bakteri sayısını belirlemek amacı ile, modifiye negatif boyama tekniği kullanılarak, kapsüllü bakteri miktarının toplam bakteri sayısına oranı araştırıldı. Sonuç olarak, ötrofikasyonda olan Kucukcekmece lagün'ü yüzey suyu örneklerinde, kapsüllü bakteri sayısının toplam bakteri sayısına oranı İstanbul Boğaz'ı ve Marmara denizinden alınan örneklere göre daha yüksek (% 25.8) olarak bulundu. Marmara denizi kumlu sediment üstünden ve 5-20 metre derinliktenalınan deniz suyu örneklerinde kapsüllü bakteri sayısı Küçükçekmece lagün'ü yüzey suyu örneklerinden daha az bulundu. Lagün yüzey suyu örneklerinde bulunan kapsüllü bakteri oram diğer örnekleme alanlarına göre önemli derecede (P

Kuzey Marmara Deniz' i Küçükçekmece lagünü ve İstanbul Boğazı deniz suyu örneklerinde kapsüllü bakterinin toplam bakteri sayısına oranı

The contribution of capsule-bearing bacteria to the total number of bacterioplankton community was enumerated to assume the metabolically active number of bacterioplankton in the eight different water masses of the Marmara Sea, Kucukcekmece lagoon and Istanbul strait. Capsulated and non-capsulated bacteria were determined using modified the negative staining technique. Total bacteria abundance and capsulated bacteria number was compared according to sampling area. As a result capsulated bacteria number was found higher at the surface water of eutrophic lagoon to the total bacteria (25.8 %) as compared to the water column of the Northern Marmara Sea apd Istanbul Strait. Capsulated bacteria 5-20 meter, was found less than lagoon samples. The surface water of lagoon percentage of capsulated bacteria was significantly higher (P<0.001) than all areas. It was observed that there was no statistically significant difference between the dates of sampling in respect to contribution of thenumber of the samples, which were taken from water above the sandy sediments of the Marmara Sea and deep from capsulated bacteria of the bacterioplankton community.

___

  • Altuğ, G. and Güler, N., (2002). Determination of the Levels of Indicator, Bacteria, Salmonella spp. and Heavy Metals in Sea Snails (Rapana venosa) from the Northern Marmara Sea, Turkey TurkJ. Fish. andAquat Sci. 2:2 141-144.
  • Azam, F. and Cho, B.C., (1987). Bacterial Utilization of Organic Matter in the Sea. In: Ecology of microbial communities. ( Fletcher M. ed.) Cambridge University Press, Cambridge, pp. 261-268.
  • Bayer, M.E. and Bayer, M.H, (1981). Fast response of bacterial membranes to virus adsorption: A fluorescence study. Proc. Natl. Acad Sci. USA 78:5618-5622.
  • Cho, B.C.and Azam F., (1990). Biogeochemical significance of bacterial biomass in the ocean's euphoric zone. Mar. Ecol. Prog. Ser. 63:253-259.
  • Choi, J.W, Sherr, B.F, Sherr, E.B., (1999). Dead or alive? A large fraction of ETS -inactive marine bacterioplankton cells assessed by reduction of CTC, can become ETS-active with incubation and substrate addition. Aquat. Microb. Ecol. 18:105-115.
  • Cole, J.J, Findlay, S., Pace, M.L., (1988). Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43:1-10.
  • Costerton, J.W., Cheng, KJ., Geesey, Ladd, T.L,Nickel, J.C., Dasgupta , M., and Marrie T.J., (1987). Bacterial biofilms in nature and disease. Annu. Rev. Microbiol 41:435-464.
  • Decho, A.W., (1990). Microbial exopolymer secretions in ocean environments: their role (s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28: 73-153.
  • Ducklow, H.W, Carlson, C.A., (1992). Oceanic bacterial production. Adv. Microb. Ecol. 12:113-181.
  • Fuhrman, J.A and Noble, R.T., (1995).Viruses and protests cause similar bacterial mortality in coastal seawater. Limnon. Oceanogr. 40: 1236-1242.
  • Gaman, PM., Sherrington, M. (1981). Food Poisoning and It's Prevention The Scienee of Food Pergamon Press pp 199-218.
  • Grossman, S., (1994). Bacterial Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: a microautoradiographic study. Microb.Ecol.28:1-18
  • Heissenberger, A., Leppard G.G., Herndl J.G, (1996). Relationship between the intracellular integrity and the morphology of the capsular envelope in attached and free-living marine bacteria. Appl. Environ. Microbiol 62:4521-4528.
  • Herndl, G.J, (1991). Microbial biomass dynamics along a trophic gradient at the Atlantic Barrier Reef off Belize (Central America).P.S.Z.N.I: Mar.Ecol 12:41-51.
  • Hobbie, J.E., Daley, R.J. and Jasper S., (1977). Use of Nucteopore filters for counting bacteria by epifluorescence microscopy. Appl. Environ. Microbiol. 33:1225-1228.
  • Hoppe, H.G, (1978). Relations between active bacteria and heterotrophic potential in the sea. Neth. J. Sea Res. 13:78-98.
  • Jacob, JM. (1989) Safe Food Handling World Health Organization, Genava 142 Jay, JM. (1986) The Microbial Spoilage of Foods Perspectives In Biotechnology and Applied Microbiology (ed., D.I Alanı and M. Mooyoung) Newyork pp 325-342.
  • Kamer, M. Fuhrman, J.A., (1997). Determination of active marine bacterioplankton: a comparison of universal 16 S r RNA probes, autoradiography, and nucleoid staining. Appl. Environ. Microbiol. 63: 1208-1213.
  • Plante, CJ, Shriwer A.G, (1998). Differential lysis of sedimentary bacteria by Arenicola marina L., examination of cell wall structure and exopolymeric capsules as correlates. J. Exp. Mar. Biol. Ecol. 229; 35-52.
  • Porter, K.G., and Feig, Y.S., (1980). The use of DAPI for identifying and counting aquatic microflora. LimnolOceanogr. 25: 943-948.
  • Stoderegger, K. Herndl , G.J., (1998). Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton. Limnol. Oceanogr. 43: 877-884.
  • Stoderegger, K.E., Herndl, GJ. (200 ^.Visualization of the exopolysaccharide bacterial capsule and its distribution in oceanic environments. Aquat. Microb. Ecol. 26: 195-199.
  • Tabor, P.S, Neihof FLA., (1982). Improved method for determination of respiring individual microorganisms in natural waters. Appl. Environ. Microbiol. 43:1249-1255.
  • Vosjan, J.H., van Noort, G.J., (1998). Enumerating nucleoid-visible marine bacterioplankto: bacterial abundance determined after storage of formalin fixed samples agrees with isopropanol rinsing method. Aquat. Microb. Ecol. 14: 149-154.
  • Zweifel U.L, Hagström Â., (1995) Total counts of marine bacteria include a large fraction of non-nucleodid-containing bacteria (ghosts). Appl. Environ. Microbiol. 61: 2180-2185.