Potential of cottonseed oil as fish oil replacer in European sea bass feed formulation

Yirmi adet Avrupa deniz levreği bireyi (35 g) 120 gün boyunca %100 balık yağı (BY), %40 Pamuk Toplama Yağı(PTY40), %60 (PTY60), %80 (PTY80) ve %100 (PTY100) oranlarında rafine edilmiş pamuk tohumu yağı (PTY) ilave edilmiş beş yemle beslenmiştir. Balık büyümesi, yem çevirim oranı ve protein değerlendirme yem uygulamasıyla değişmezken, hepatosomatik ve visseral yağ indeksi yemdeki PTYnin seviyesiyle artmıştır. Fileto toplam lipit yağ asidi kompozisyonu test yemlerinin yağ asidi kompozisyonuna yansımıştır. BY, PTY40 ve PTY60 ile beslenen bireylerin fileto tekli doymamış yağ asidi miktarı diğer gruplara göre daha yüksek iken doymuş (DYA) ve çoklu doymamış yağ asitleri (ÇDYA) miktarı etkilenmemiştir. Test yemleri göz önüne alındığında, PTY100 grubu bireylerinin fileto yağlarında bazı yağ asitleri (18:0, 18:1n-9, 20:5n-3 ve 22:6n-3) yüksek oranda birikmiştir. Filetodaki uzun zincirli n-3 ÇDYAlerin birikimi artan balık yağı oranı ile beslenen balıklarda yetersizdir. Bu çalışma, yemlerde balık unu kullanıldığı sürece, büyüme performansı ve yem değerlendirme açısından Avrupa deniz levreği (35 g) için PTYnin balık yağını ikame edilebileceğini önermektedir.

Avrupa deniz levreği yem formulasyonunda pamuk tohumu yağının potansiyel olarak balık yağına ikamesi

Triplicate groups of 20 European sea bass (35 g) were fed five diets in which the added lipid was 100% fish oil (FO), 40% (CSO40), 60% (CSO60), 80% (CSO80) and 100% (CSO100) refined cottonseed oil (CSO), for a period of 120 days. Overall fish growth, feed conversion ratio and protein utilization were unaffected by dietary treatment, but hepatosomatic and visceral fat indexes increased with increasing dietary CSO. Fillet fatty acid composition of total lipids reflected the fatty acids in the test diets. The monounsaturated fatty acids were significantly higher in fillet of fish fed diet FO, CSO40 and CSO60 compared to other treatments while saturated and polyunsaturated fatty acids (PUFA) were not affected by the dietary treatment. Some fatty acids (18:0, 18:1n-9, 20:5n-3 and 22:6n-3) were present in higher concentration in fillet lipid than in the CSO100 dietary lipid indicating accumulation in fillet relative to test diets. Retention of n-3 LC-PUFA within the fillet was increasingly inefficient among fish fed increasing levels of FO. Thus, this study suggests that CSO can be considered as a relatively effective substitute for fish oil in European sea bass (35 g) in terms of growth performances and feed efficiency as far as fish meal is present in the diet.

___

  • AOAC 1990. Official Methods of Analysis, Association of Official Analytical Chemists, Arlington, MA.
  • Bell, J.G., Henderson, R.J., Tocher, D.R., McGhee, F., Dick, J.R., Porter, A., Smullen, R.P. and Sargent, J.R. 2002. Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. Journal of Nutrition, 132: 222-230.
  • Bell, J.G., McEvoy, J., Tocher, D.R., McGhee, F., Campbell, P.J. and Sargent, J.R. 2001. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. Journal of Nutrition, 131: 1535-1543.
  • Bell, J.G., McEvoy, J., Webster, J.L., McGhee, F., Millar, R.M. and Sargent, J.R. 1998. Flesh lipid and carotenoid composition of Scottish farmed Atlantic salmon (Salmo salar). Journal of Agricultural and Food Chemistry, 46: 119-127. doi: 10.1021/jf970581k
  • Bell, J.G., Tocher, D.R., Macdonald, F.M. and Sargent, J.R. 1994. Effects of Diets Rich in Linoleic (18/2n-6) and Alpha-Linolenic (18/3n-3) Acids on the Growth, Lipid Class and Fatty-Acid Compositions and Eicosanoid Productıon in Juvenile Turbot (Scophthalmus maximus L.). Fish Physiology and Biochemistry, 13: 105-118. doi: 10.1007/BF00004336
  • Benedito-Palos, L., Navarro, J.C., Bermejo-Nogales, A., Saera-Vila, A., Kaushik, S. and Perez-Sanchez, J. 2009. The time course of fish oil wash-out follows a simple dilution model in gilthead sea bream (Sparus aurata L.) fed graded levels of vegetable oils. Aquaculture, 288: 98-105. doi: 10.1016/j.aquaculture.2008.11.010
  • Benedito-Palos, L., Saera-Vila, A., Calduch-Giner, J.A., Kaushik, S. and Perez-Sanchez, J. 2007. Combined replacement of fish meal and oil in practical diets for fast growing juveniles of gilthead sea bream (Sparus aurata L.): Networking of systemic and local components of GH/IGF axis. Aquaculture, 267: 199-212. doi: 10.1016/j.aquaculture.2007.01.011
  • Brown, P.B. and Hart, S.D. 2010. Soybean oil and other n-6 polyunsaturated fatty acid-rich vegetable oils. In: G.M. Turchini, W.K. Ng and R.D. Tocher (Eds.), Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds. CRC Press, Taylor and Francis, Boca Raton, FL, USA: 133-160.
  • Caballero, M.J., Izquierdo, M.S., Kjorsvik, E., Fernandez, A.J. and Rosenlund, G. 2004. Histological alterations in the liver of sea bream, Sparus aurata L., caused by short- or long-term feeding with vegetable oils. Recovery of normal morphology after feeding fish oil as the sole lipid source. Journal of Fish Diseases, 27: 531-541. doi: 10.1111/j.1365-2761.2004.00572.x
  • Czesny, S. and Dabrowski, K. 1998. The effect of egg fatty acid concentrations on embryo viability in wild and domesticated walleye (Stizostedion vitreum). Aquatic Living Resources, 11: 371-378.
  • Figueiredo-Silva, A., Rocha, E., Dias, J., Silva, P., Rema, P., Gomes, E. and Valente, L. M. P. 2005. Partial replacement of fish oil by soybean oil on lipid distribution and liver histology in European sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss) juveniles. Aquaculture Nutrition, 11: 147-155. doi: 10.1111/j.1365-2095.2004.00337.x
  • Folch, J., Lees, M. and Stanley, G.H.S. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 497-509.
  • Gunstone, F.D. 2010. The World’s Oils and Fats. In: G.M. Turchini, W.K. Ng and R.D. Tocher (Eds.), Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Taylor and Francis, Boca Raton, FL, USA: 61-98.
  • Gunstone, F.D. and Harwood, J.L. 2007. Occurrence and Characterization of Oils and Fats. In: F.D. Gunstone, J.L. Harwood and A.J. Dijkstra (Eds.), The Lipid Handbook CRC Press, New York, USA: 37-142.
  • Huang, S.S.Y., Oo, A.N., Higgs, D.A., Brauner, C.J. and Satoh, S. 2007. Effect of dietary canola oil level on the growth performance and fatty acid composition of juvenile red sea bream, Pagrus major. Aquaculture, 271: 420-431. doi: 10.1016/j.aquaculture.2007.06.004
  • Izquierdo, M.S., Montero, D., Robaina, L., Caballero, M.J., Rosenlund, G. and Gines, R. 2005. Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long terin period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture, 250: 431-444. doi: 10.1016/j.aquaculture.2004.12.001
  • Izquierdo, M.S., Obach, A., Arantzamendi, L., Montero, D., Robaina, L. and Rosenlund, G. 2003. Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality. Aquaculture Nutrition, 9: 397-407. doi: 10.1046/j.1365-2095.2003.00270.x
  • Leaver, M.J., Villeneuve, L.A.N., Obach, A., Jensen, L., Bron, J.E., Tocher, D.R. and Taggart, J.B. 2008. Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). Bmc Genomics, 9.
  • Martins, C.I.M., Schrama, J.W. and Verreth, J.A.J. 2006a. The relationship between individual differences in feed efficiency and stress response in African catfish Clarias gariepinus. Aquaculture, 256: 588-595. doi: 10.1016/j.aquaculture.2006.02.051
  • Martins, D., Gomes, E., Rema, P., Dias, J., Ozório, R.O.A. and Valente, L.M.P. 2006b. Growth, digestibility and nutrient utilization of rainbow trout (Oncorhynchus mykiss) and European sea bass (Dicentrarchus labrax L) juveniles fed different dietary soybean oil levels. Aquaculture International, 14: 285-295. doi: 10.1007/s10499-005-9034-x
  • Metcalfe, L.D. and Schmitz, A.A. 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem., 363-364. doi: 10.1021/ac60171a016
  • Montero, D. and Izquierdo, M. 2010. Welfare and health of fish fed vegetable oils as alternative lipid sources to fish oil. In: G.M. Turchini, W.K. Ng and R.D. Tocher (Eds.), Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Taylor and Francis, Boca Raton, FL, USA: 439-486.
  • Montero, D., Robaina, L., Caballero, M. J., Gines, R. and Izquierdo, M.S. 2005. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: A time-course study on the effect of are-feeding period with a 100% fish oil diet. Aquaculture, 248: 121-134. doi: 10.1016/j.aquaculture.2005.03.003
  • Morgan, D.J. and Iwama, G.K. 1997. Measurements of stressed states in the field. In: G.K. Iwama, A.D. Pickering, J.P. Sumpter and C.B. Schreck (Eds.), Fish Stress and Health in Aquaculture. Cambridge University Press, Cambridge, UK: 247-268.
  • Mourente, G. and Bell, J.G. 2006. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: Effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology, 145: 389-399. doi: 10.1016/j.cbpb.2006.08.012
  • Mourente, G. and Dick, J.R. 2002. Influence of partial substitution of dietary fish oil by vegetable oils on the metabolism of 1-C-14 18: 3n-3 in isolated hepatocytes of European sea bass (Dicentrarchus labrax L.). Fish Physiology and Biochemistry, 26, 297-308. doi: 10.1023/A:1026236418184
  • Mourente, G., Dick, J. R., Bell, J. G. and Tocher, D. R. 2005a. Effect of partial substitution of dietary fish oil by vegetable oils on desaturation and [beta]-oxidation of [1-14C]18:3n-3 (LNA) and [1-14C]20:5n-3 (EPA) in hepatocytes and enterocytes of European sea bass (Dicentrarchus labrax L.). Aquaculture, 248, 173-186. doi: 10.1016/j.aquaculture.2005.04.023
  • Mourente, G., Good, J.E. and Bell, J.G. 2005b. Partial substitution of fish oil with rapeseed, linseed and olive oils in diets for European sea bass (Dicentrarchus labrax L.): effects on flesh fatty acid composition, plasma prostaglandins E-2 and F-2 alpha, immune function and effectiveness of a fish oil finishing diet. Aquaculture Nutrition, 11: 25-40. doi: 10.1111/j.1365-2095.2004.00320.x
  • Naylor, R.L., Hardy, R.W., Bureau, D.P., Chiu, A., Elliott, M., Farrell, A.P., Forster, I., Gatlin, D.M., Goldburg, R.J., Hua, K. and Nichols, P.D. 2009.
  • Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences of the United States of America, 106: 18040-18040. doi: 10.1073/pnas.0905235106
  • Person-Le Ruyet, J., Skalli, A., Dulau, B., Le Bayon, N., Le Delliou, H. and Robin, J.H. 2004. Does dietary n-3 highly unsaturated fatty acids level influence the European sea bass (Dicentrachus labrax) capacity to adapt to a high temperature? Aquaculture, 242: 571-588. doi: 10.1016/j.aquaculture.2004.09.011
  • Piedecausa, M.A., Mazon, M.J., Garcia, B.G. and Hernandez, M.D. 2007. Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture, 263: 211-219. doi: 10.1016/j.aquaculture.2006.09.039
  • Regost, C., Arzel, J., Robin, J., Rosenlund, G. and Kaushik, S.J. 2003. Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima) - 1. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture, 217: 465-482. doi: 10.1016/S0044-8486(02)00259-4
  • Richard, N., Mourente, G., Kaushik, S. and Corraze, G. 2006. Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.). Aquaculture, 261: 1077-1087. doi: 10.1016/j.aquaculture.2006.07.021
  • Rosenlund, G., Obach, A., Sandberg, M. G., Standal, H. and Tveit, K. 2001. Effect of alternative lipid sources on long-term growth performance and quality of Atlantic salmon (Salmo salar L.). Aquaculture Research, 32: 323-328. doi: 10.1046/j.1355-557x.2001.00025.x
  • Santigosa, E., Geay, F., Tonon, T., Le Delliou, H., Kuhl, H., Reinhardt, R., Corcos, L., Cahu, C., Zambonino-Infante, J. and Mazurais, D. 2011. Cloning, Tissue Expression Analysis, and Functional Characterization of Two Δ6-Desaturase Variants of Sea Bass (Dicentrarchus labrax L.). Marine Biotechnology, 13: 22-31. doi: 10.1007/s10126-010-9264-4
  • Senadheera, S.P.S.D., Turchini, G.M., Thanuthong, T. and Francis, D.S. 2010. Effects of dietary [alpha]-linolenic acid (18:3n-3)/linoleic acid (18:2n-6) ratio on growth performance, fillet fatty acid profile and finishing efficiency in Murray cod. Aquaculture, 309: 222-230. doi: 10.1016/j.aquaculture.2010.09.039
  • Skalli, A. and Robin, J.H. 2004. Requirement of n-3 long chain polyunsaturated fatty acids for European sea bass (Dicentrarchus labrax) juveniles: growth and fatty acid composition. Aquaculture, 240: 399-415. doi: 10.1016/j.aquaculture.2004.06.036
  • Stubhaug, I., Lie, Ø. and Torstensen, B.E. 2007. Fatty acid productive value and β-oxidation capacity in Atlantic salmon (Salmo salar L.) fed on different lipid sources along the whole growth period. Aquaculture Nutrition, 13: 145-155. doi: 10.1111/j.1365-2095.2007.00462.x
  • Subasinghe, R., Soto, D. and Jia, J. 2009. Global aquaculture and its role in sustainable development. Reviews in Aquaculture, 1: 2-9. doi: 10.1111/j.1753-5131.2008.01002.x
  • Tocher, D.R. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 41: 717-732. doi: 10.1111/j.1365-2109.2008.02150.x
  • Torstensen, B.E., Lie, O. and Froyland, L. 2000. Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.) - Effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources. Lipids, 35: 653-664. doi: 10.1007/s11745-000-0570-6
  • Torstensen, B.E. and Tocher, D.R. 2010. The effects of fish oil replacement on lipid metabolism of fish. In: G.M.N. Turchini, W.K. Ng, R.D. Tocher (Eds.), Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA: 405-438
  • Turchini, G.M. and Francis, D.S. 2009. Fatty acid metabolism (desaturation, elongation and beta-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. British Journal of Nutrition, 102: 69-81. doi: 10.1017/S0007114508137874
  • Turchini, G.M., Francis, D.S., Keast, R.S.J. and Sinclair, A.J. 2011. Transforming salmonid aquaculture from a consumer to a producer of long chain omega-3 fatty acids. Food Chemistry, 124: 609-614.
  • Turchini, G.M., Torstensen, B.E. and Ng, W.K. 2009. Fish oil replacement in finfish nutrition. Reviews in Aquaculture, 1: 10-57. doi: 10.1111/j.1753-5131. 2008.01001.x
  • Viola, S. and Arieli, Y. 1983. Nutrition studies with tilapia hybrids. 2. The effects of oil supplements to practical diets for intensive aquaculture. Bamidgeh, 35: 44-52.
  • Wassef, E.A., Saleh, N.E. and El-Abd El-Hady, H.A. 2009. Vegetable oil blend as alternative lipid resources in diets for gilthead seabream, Sparus aurata. Aquaculture International, 17: 421-435. doi: 10.1007/s10499-008-9213-7
  • Wassef, E.A., Shalaby, S.H. and Sakr, E.M. 2004. Evaluation of three plant oils in practical diets for European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata). 11th International Symposium of Nutrition and Feeding in Fish. Phuket Island, Thailand, 82 pp.
  • Wassef, E.A., Wahby, O.M. and Sakr, E.M. 2007. Effect of dietary vegetable oils on health and liver histology of gilthead seabream (Sparus aurata) growers. Aquaculture Research, 38: 852-861. doi: 10.1111/j.1365-2109.2007.01738.x
  • Yıldız, M. and Şener, E. 1997. Effect of dietary supplementation with soybean oil, sunflower oil or fish oil on the growth of seabass (Dicentrarchus labrax L. 1758). Cah. Méditerr., 225-234.
  • Yıldız, M. and Şener, E. 2004. The Effect of dietary oils of vegetable origin on the performance, body composition and fatty acid profiles of sea bass (Dicentrarchus labrax L., 1758) juveniles. Turkish Journal of Veterinary Science, 28: 553-562.
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Seasonal discards and by-catch of striped venus clam (Chamelea gallina) (Mollusca, Bivalves) fishery in the black sea

GÖKTUĞ DALGIÇ, YUSUF CEYLAN

Taxonomic survey of benthic diatoms on natural substrata from coastal lagoon (Aegean sea, Turkey)

Fatma Çolak SABANCI

Impact of depth and season on the demersal trawl discard

ALİ CEMAL GÜCÜ

Investigation of the selectivity of trammel nets used in red mullet (Mullus barbatus) fishery in the eastern black sea, Turkey

FERHAT KALAYCI, TUNCAY YEŞİLÇİÇEK

Determination of some metal levels in muscle tissue of nine fish species from Beyşehir Lake, Turkey

HALUK ÖZPARLAK, GÜLŞİN ARSLAN, EMİNE ARSLAN

A preliminary study on protease activity of the northern pike (Esox lucius L. 1758) larvae

CEMİL KAYA GÖKÇEK, MEHMET NAZ, Tamas SZABO, Bela URBANYI

Morphological development and allometric growth of sharpsnout seabream (Diplodus puntazzo) larvae

DENİZ ÇOBAN, CÜNEYT SUZER, ŞÜKRÜ YILDIRIM, ŞAHİN SAKA, Kürşat FIRAT

Potential of cottonseed oil as fish oil replacer in European sea bass feed formulation

Tufan EROLDOĞAN, M. Giovanni TURCHINI, H. Asuman YILMAZ, OĞUZ TAŞBOZAN, KENAN ENGİN, ABDULLATİF ÖLÇÜLÜ, Ilgın ÖZŞAHİNOĞLU, Pınar MUMOĞULLARINDA

Genetic stock structure of frigate Tuna (Auxis thazard) along Indian coast based on PCR-RFLP analyses of mtDNA D-Loop region

Girish KUMAR, Swaraj Priyaranjan KUNAL, Maria Rosalia MENEZES

First evidence of pheromonal stimulation of maturation in Eurasian Perch, Perca fluviatilis L., females

Daniel ZARSKI