Effects of Different Commercial Feeds and Enrichments on Biochemical Composition and Fatty Acid Profile of Rotifer (Brachionus Plicatilis, Müller 1786) and Artemia Franciscana

The objective of the present study was to determine the effects of several commercial rotifer feeds and enrichments ongrowth, biochemical and fatty acid composition of L-type rotifer and Artemia franciscana nauplii. In experiment I, fiveexperimental diets (M0 Plus, S.Parkle, w-3 Yeast 60, Beaker’s yeast and Chlorella vulgaris) were tested for rotifer cultureperformance and in the second experiment six enrichers (w-3 Olio, n-3 Top Rich, Red Pepper, Culture Selco, microalgaemixture (Dunaliella salina + Chlorella vulgaris) and Emulsion T) were evaluated for the fatty acid composition of rotifer andArtemia franciscana. In experiment I, rotifers fed S.Parkle and Beaker’s yeast showed better biomass production and eggdensity while the number of egg carrying female number was higher. In experiment II, rotifers enriched n-3 Top Rich showedbetter n-3 HUFA retention whereas Artemia franciscana nauplii enriched Red Pepper showed highest HUFA accumulation.Culture Selco seems optimal for artemia enrichment for EPA (20:5n-3) and DHA (22:6n-3) accumulation. In conclusion,Beaker’s yeast is still applicable in comparison to other commercial feeds in rotifer culture. Further study is needed fordetermination of mineral composition of rotifer feeds and commercial enrichments and their retention in live prey and larvaeuse in Turkey.

___

A.O.A.C. (1995). Official Methods of Analysis of Official Analytical Chemists International 16th (Eds.), Association of Official Analytical Chemists, Arlington, VA, USA.

Ando, Y., Abe, T., Ookubo, Y., & Namikawa, S. (2005). Fatty Acid Enrichment of Rotifers Using Type-A Gelatin Solution. 北海道大学水産科学研究彙報, Bulletin of Fisheries Sciences, Hokkaido University, 56(3), 61- 65.

Bell, J. G., & Sargent, J. R. (2003). Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture, 218(1), 491-499. http://dx.doi.org/10.1016/S0044-8486(02)00370-8

Bhavan, P.S., Devi, V.G., Shanti, R., Radhakrishnan, S., & Poongodi, R. (2010). Basic biochemical constituents and profiles of amino acids in the post larvae of Macrobrachium rosenbergii fed with Spirulina and Yeast enriched Artemia. Journal of Scientific Research, 2(3), 539. http://dx.doi.org/10.3329/jsr.v2i3.3663

Bruggeman, E.; Sorgeloos, P.; Vanhaecke, P. (1980). Improvements in the decapsulation technique of Artemia cysts, in: Persoone, G. et al. (Ed.) The brine shrimp Artemia : Proceedings of the International Symposium on the brine shrimp Artemia salina, Corpus Christi, Texas, USA, August 20-23, 1979: 3. Ecology, culturing, use in aquaculture. pp. 261-269

Cahu, C., & Infante, J.Z. (2001). Substitution of live food by formulated diets in marine fish larvae. Aquaculture, 200(1), 161-180. http://dx.doi.org/10.1016/S0044-8486(01)00699-8

Castillo, E.C., Gapasin, R.S., & Leaño, E.M. (2009). Enrichment potential of HUFA-rich thraustochytrid Schizochytrium mangrovei for the rotifer Brachionus plicatilis. Aquaculture, 293(1), 57-61. https://doi.org/10.1016/j.aquaculture.2009.04.008

Christie, W.W. (1989). Gas Chromatography and Lipids: a Practical Guide. The Oily Press, Bridgwater, U.K. 67– 69 pp.

Demir, O., & Diken, G. (2011). Effects of commercial enrichment products on fatty acid components of rotifer, Brachionus plicatilis. African Journal of Biotechnology, 10(66), 15065-15071. http://dx.doi.org/10.5897/AJB11.3292

Doucha, J., Livansky, K., Kotrbacek, V., & Zachleder V. (2009). Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review. Applied Microbiology Biotechnology, 83, 1001–1008. https://doi.org/10.1007/s00253-009-2058-9

Ferreira, M., Maseda, A., Fábregas, J., & Otero, A. (2008). Enriching rotifers with “premium” microalgae. Isochrysis aff. galbana clone TISO. Aquaculture, 279(1), 126-130. https://doi.org/10.1016/j.aquaculture.2008.03.044

Ferreira, I.M.P.L.V.O., Pinho, O., Vieira, E., & Tavarela, J.G. (2010). Brewer's Saccharomyces yeast biomass: characteristics and potential applications. Trends in food science & Technology, 21(2): 77-84. http://dx.doi.org/10.1016/j.tifs.2009.10.008

Folch, J., Lees, M., & Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biology Chemistry, 226, 497–509.

Furuita, H., Takeuchi, T., Toyota, M., & Watanabe, T. (1996). EPA and DHA requirements in early juvenile red sea bream using HUFA enriched Artemia Nauplii. Fisheries Science, 62(2), 246-251. http://dx.doi.org/10.2331/fishsci.62.246

Hamre, K., Srivastava, A., Rønnestad, I., Mangor‐ Jensen, A., & Stoss, J. (2008). Several micronutrients in therotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae. Aquaculture Nutrition, 14(1), 51-60. http://dx.doi.org/10.1111/j.1365-2095.2007.00504.x

Hamre, K. (2011). Metabolism, interactions, requirements and functions of vitamin E in fish. Aquaculture Nutrition, 17(1), 98-115. https://doi.org/10.1111/j.1365-2095.2010.00806.x

Hamre, K., Yufera, M., Ronnestad, I., Boglione, C., Conceiçao, L.E.C., & Izquierdo, M.S. (2013). Fish larval nutrition and feed formulation – knowledge gaps and bottlenecks for advances in larval rearing. Review in Aquaculture, 5, 526–558. https://doi.org/10.1111/j.1753-5131.2012.01086.x

Hamre, K. (2016). Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture, 450, 136-142. https://dx.doi.org/10.1016/j.aquaculture.2015.07.016

Han, K., Geurden, I., & Sorgeloos, P. (2001). Fatty acid changes in enriched and subsequently starved Artemia franciscana nauplii enriched with different essential fatty acids. Aquaculture, 199(1), 93-105. https://doi.org/10.1016/S0044-8486(00)00596-2

Hirayama, K., Maruyama, I., & Maeda, T. (1989). Nutritional effect of freshwater Chlorella on growth of the rotifer Brachionus plicatilis. Hydrobiologia, 186(1), 39-42. https://doi.org/10.1007/BF00048894

Izquierdo, M.S., Watanabe, T., Takeuchi, T., Arakawa T., & Kitajima, C. (1990). Optimal EFA levels in Artemia to meet the EFA requirements of red seabream (Pagrus major). In: Takeda, M. & T. Watanabe. (Eds.). The Current Status of Fish Nutrition in Aquaculture. Tokyo University Fisheries, Tokyo, pp. 221-232.

Izquierdo, M.S. (1996). Essential fatty acid requirements of cultured marine fish larvae. Aquaculture Nutrition, 2(4), 183-191. https://doi.org/10.1111/j.1365-2095.1996.tb00058.x

Izquierdo, M.S., Socorro, J., Arantzamendi, L., & Hernández-Cruz, C.M. (2000). Recent advances in lipid nutrition in fish larvae. Fish Physiology and Biochemistry, 22(2), 97-107. https://dx.doi.org/10.1023/A:1007810506259

Izquierdo, M.S. (2005). Essential fatty acid requirements in Mediterranean fish species. Cah. Options Mediterr., 63, 91–102.

Izquierdo, M.S., & Koven, W.M. (2011). Lipids. In: Larval Fish Nutrition (Holt, J. ed.), (pp. 47–82). Oxford, UK, Wiley-Blackwell, John Wiley and Sons Publisher Editor.

Kanazawa, A. (2003). Nutrition of marine fish larvae. Journal of Applied Aquaculture, 13, 1-2, 103-143. http://dx.doi.org/10.1300/J028v13n01_05

Kim, S.K., Matsunari, H., Takeuchi, T., Yokoyama, M., Murata, Y., & Ishihara, K. (2007). Effect of different dietary taurine levels on the conjugated bile acid composition and growth performance of juvenile and fingerling Japanese flounder Paralichthys olivaceus. Aquaculture, 273(4), 595-601. http://dx.doi.org/10.1016/j.aquaculture.2007.10.031

Kouba, A., Velíšek, J., Stará, A., Masojídek, J., & Kozák, P. (2014). Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus). BioMed Research International. http://dx.doi.org/10.1155/2014/408270

Lee, B., Kim, D., Lee, N., Hagiwara, A., Kwon, O., Park, H., & Park, J., (2016). Optimal Food and Concentration for Growth of Small Rotifer, Proales similis. Journal of Fisheries and Marine Sciences Education, 28(2), 315-322. http://dx.doi.org/10.13000/JFMSE.2016.28.2.315

Lie, O., Haaland, H., Hemre, G. I., Maage, A., Lied, E., Rosenlund, G., Sandnes, K., & Olsen, Y., (1997). Nutritional composition of rotifers following a change in diet from yeast and emulsified oil to microalgae. Aquaculture International, 5(5), 427-438. http://dx.doi.org/10.1023/A:1018384711958

Lind, Ryan D. (2014). Effects of Selected Commercial Diets and Yeast Substitution on the Growth and Associated Microbiota of Rotifer (Brachionus plicatilis). (Master Thesis). University of Miami, Miami, USA.

Lubzens, E., Tandler, A., & Minkoff, G. (1989). Rotifers as food in aquaculture. Hydrobiologia, 186(1), 387-400. http://dx.doi.org/10.1007/BF00048937

Lubzens, E., Zmora, O., & Barr, Y. (2001). Biotechnology and aquaculture of rotifers. Hydrobiologia, 446/447, 37–353. http://dx.doi.org/10.1007/978-94-010-0756-6_44

Mahre, H.K., Hamre, K., & Elvevoll, E.O. (2012). Nutrient evaluation of rotifers and zooplankton: feed for marine fish larvae. Aquaculture Nutrition, 19(3), 301- 311. http://dx.doi.org/10.1111/j.1365-2095.2012.00960.x

Maruyama, I., Nakao, T., Shigeno, I., Ando, Y., & Hirayama, K. (1997). Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. Hydrobiologia, 358(1-3), 133-138. http://dx.doi.org/10.1023/A:1003116003184

Monroig, O., Navarro, J.C., Amat, F., Gonzalez, P., Bermejo, A., & Hontoria. F. (2006). Enrichment of Artemia nauplii in essential fatty acids with different types of liposomes and their use in the rearing of gilthead seabream (Sparus aurata) larvae. Aquaculture, 251, 491-508. http://dx.doi.org/10.1016/j.aquaculture.2005.06.026

Nhu, C.V. (2004). A Comparison of yield and quality of the rotifer (Brachionus plicatilis-L. Strain) fed different diets under aquaculture conditions, Vietnam. Asian Fisheries Science, 17, 357-363.

Nordgreen, A., Penglase, S., & Hamre, K. (2013). Increasing the levels of the essential trace elements Se, Zn, Cu and Mn in rotifers (Brachionus plicatilis) used as live feed. Aquaculture, 380, 120-129. http://dx.doi.org/10.1016/j.aquaculture.2012.11.032

Özbaş, B., Göksan, T., & Ak, I. (2006). Brachionus plicatilis (Rotifer)'in Farklı Besin Ortamlarında Büyümesi. Ege Üniversitesi Su Ürünleri Dergisi, 23(2), 279-282.

Penglase, S., Hamre, K., Sweetman, J. W., & Nordgreen, A. (2011). A new method to increase and maintain the concentration of selenium in rotifers (Brachionus spp.). Aquaculture, 315(1), 144-153. http://dx.doi.org/10.1016/j.aquaculture.2010.09.007

Rehberg-Haas, S., Meyer, S., Lippemeier, S., & Schulz, C. (2015). A comparison among different Pavlova sp. products for cultivation of Brachionus plicatilis. Aquaculture, 435, 424-430. http://dx.doi.org/10.1016/j.aquaculture.2014.10.029

Ribeiro, A.R.A., Ribeiro, L., Dinis, M. T., & Moren, M. (2011). Protocol to enrich rotifers (Brachionus plicatilis) with iodine and selenium. Aquaculture Research, 42(11), 1737-1740.http://dx.doi.org/10.1111/j.1365-2109.2010.02752.x

Sargent, J., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., & Tocher, D. (1999). Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture, 179(1), 217-229. http://dx.doi.org/10.1016/S0044-8486(99)00191-X

Sorgeloos, P., Dhert, P., & Candreva, P. (2001). Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture, 200(1), 147-159. http://dx.doi.org/10.1016/S0044-8486(01)00698-6

Srivastava, A., Hamre, K., Stoss, J., & Nordgreen, A. (2012). A study on enrichment of the rotifer Brachionus “Cayman” with iodine from different sources. Aquaculture, 334: 82-88. https://doi.org/10.1016/j.aquaculture.2011.12.025

Takeuchi, T. (2014). Progress on larval and juvenile nutrition to improve the quality and health of seawater fish: a review. Fisheries Science, 80(3), 389-403. http://dx.doi.org/10.1007/s12562-014-0744-8

Yoshimatsu, T., Higuchi, T., Zhang, D., Fortes, N. R., Tanaka, K., & Yoshimura, K. (2006). Effect of dietary cobalt supplementation on the population growth of rotifer Brachionus rotundiformis. Fisheries Science, 72(1), 214-216. http://dx.doi.org/10.1111/j.1444-2906.2006.01139.x

Yúfera, M., & Darias, M.J. (2007). The onset of exogenous feeding in marine fish larvae. Aquaculture, 268(1), 53-63. https://doi.org/10.1016/j.aquaculture.2007.04.050

Van der Meeren, T., Olsen, R. E., Hamre, K., & Fyhn, H.J. (2008). Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 274(2), 375-397. http://dx.doi.org/10.1016/j.aquaculture.2007.11.041
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Genetic Diversity and Population Structure of the Asian Green Mussel (Pernaviridis) in the Waters of Sabah, Malaysia Based on Mitochondrial DNA D-Loop Sequences

Jen Shi LAU, Julian RANSANGAN, Kenneth Francis RODRIGUES

Karyological Analysis of Two Species in the Subfamily Schizothoracinae (Cypriniformes: Cyprinidae) from China, with Notes on Karyotype Evolution in Schizothoracinae

Yinggui DAI, Hufeng HAN

Reproductive Biology of the Common Pandora Pagellus erythrinus (Linnaeus, 1758) of Oran Bay (Algerian West Coasts)

Hadjer MAHDI, Lotfi Bensahla TALET, Zitouni BOUTİBA

Insulin-Like Androgenic Gland Hormone Gene in the Freshwater Chinese Mitten Crab Eriocheir sinensis:cDNA Cloning, Expression Pattern and Interaction with EsIGFBP7

Kun SONG, Tianshuo XU, Yanan Zang, Ali SERWADDA, Tianhao DAI, Yuanchao MA, Huaishun SHEN

Spawning Season, First Maturity Length and Age of 21 Fish Species from the Central Aegean Sea, Turkey

Akın Türker İLKYAZ, GÜLNUR METİN, OZAN SOYKAN, HASAN TUNCAY KINACIGİL

Effects of Acute and Chronic Air Exposure on Growth and Stress Response of Juvenile Olive Flounder, Paralichthys olivaceus

Han Kyu LIM, Jun Wook HUR

Protein Hydrolysates Prepared from the Viscera of Skipjack Tuna (Katsuwonus pelmamis): Antioxidative Activity and Functional Properties

Sappasith KLOMKLAO, Soottawat BENJAKUL

Molecular Characterisation of Microbial Diversity Associated with Oysters within a Commercial Oyster Farm

Kamarul Zaman ZARKASI, Teh Faridah NAZARI

The Correlation between the Differences in NUCB2/Nesfatin(NES) Peptide Levels and Body Weight, Lenght and Gender in Alburnus tarichi

Fatma CAF, Sibel KÖPRÜCÜ, Sermin ALGÜL, Mustafa KOYUN, Ataman Altuğ ATICI

Ichthyoplankton of Inner Part of Izmir Bay, Aegean Sea (2000-2005)

TÜLİN ÇOKER, Bülent CİHANGİR