> Innate Immune Responses in Fish: Antigen Presenting Cells and Professional Phagocytes

Similar to higher vertebrates, the immune system of fish is composed of two major components, innate (non-specific)and adaptive (specific) immune responses. However, the innate immune system in fish has a fundamental importance inpreventing pathogen entry as the adaptive immune responses are less efficient compared to mammals. The components of theinnate immune system in fish are commonly divided into three compartments: physical parameters, humoral parameters, andcellular factors.Recently, the fish professional APCs received more attention resulting in the increased numbers of studies on theirmorphology and function. Following a lengthy gap, in the last decades, considerable progress has been made in themechanistic understanding of fish APC-dependent immune responses. Dendritic cells (DCs), the universal APCs and themajor players in bridging and shaping both innate and adaptive immune responses have been characterized in several teleostfish based on their morphology and function. In addition to innate immunity, macrophages have been demonstrated asessential in initiation of adaptive immunity as another professional APCs in teleost fish. Like in mammals, teleost B cellswere characterized as important APCs that activate naïve T cells and initiate adaptive immunity.In this study, we provide an overview of innate immune responses in teleost fish and discuss the current status of thefield of teleost fish DCs, macrophages and B cells as professional APCs.

___

Acharya, K.R., & Ackerman, S.J. (2014). Eosinophil Granule Proteins: Form and Function. J Biol Chem, 289(25), 17406-17415. http://dx.doi.org/10.1074/jbc.R113.546218

Aghaallaei, N., Bajoghli, B., Schwarz, H., Schorpp, M., & Boehm, T. (2010). Characterization of mononuclear phagocytic cells in medaka fish transgenic for a cxcr3a:gfp reporter. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18079-18084. http://dx.doi.org/10.1073/pnas.1000467107

Ainsworth, A.J. (1992). Fish granulocytes: Morphology, distribution, and function. Annual Review of Fish Diseases, 2, 123-148. http://dx.doi.org/10.1016/0959-8030(92)90060-B

Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen Recognition and Innate Immunity. Cell, 124(4), 783- 801. http://dx.doi.org/10.1016/j.cell.2006.02.015

Alexander, J.B., & Ingram, G.A. (1992). Noncellular nonspecific defence mechanisms of fish. Annual Review of Fish Diseases, 2, 249-279. http://dx.doi.org/10.1016/0959-8030(92)90066-7

Alvarez, D., Vollmann, E.H., & von Andrian, U.H. (2008). Mechanisms and Consequences of Dendritic Cell Migration. Immunity, 29(3), 325. http://dx.doi.org/10.1016/j.immuni.2008.08.006

Ammari, M.G., Harris, A.N., Stokes, J.V., Bailey, R.H., & Pinchuk, L.M. (2014). Negative regulatory effects of phosphatidylinositol3-kinase pathway on phagocytosis and macropinocytosis in bovine monocytes. Journal of veterinary medicine and research, 1(2), 1008.

António, A., Susana, L., Joana, S., Anthony, E.E., & Manuel, T.S. (1998). Neutrophil and macrophage responses to inflammation in the peritoneal cavity of rainbow trout Oncorhynchus mykiss. A light and electron microscopic cytochemical study. Diseases of Aquatic Organisms, 34(1), 27-37. http://dx.doi.org/10.3354/dao034027

Aoki, T., Takano, T., & Hikima, J.-i. (2015). DNA vaccine-mediated innate immune response triggered by PRRs in teleosts. Fisheries Science, 81(2), 205-217. http://dx.doi.org/10.1007/s12562-014-0845-4

Arango Duque, G., & Descoteaux, A. (2014). Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Frontiers in Immunology, 5, 491. http://dx.doi.org/10.3389/fimmu.2014.00491

Aranishi, F., & Nakane, M. (1997). Epidermal proteases of the Japanese eel. Fish Physiology and Biochemistry, 16(6), 471-478. http://dx.doi.org/10.1023/a:1007736804243

Awasthi, A., Rathore, G., Sood, N., Khan, M.Y., & Lakra, W.S. (2015). Establishment of a leukocyte cell line derived from peritoneal macrophages of fish, Labeo rohita (Hamilton, 1822). Cytotechnology, 67(1), 85-96. http://dx.doi.org/10.1007/s10616-013-9660-5

Balla, K.M., Lugo-Villarino, G., Spitsbergen, J.M.,Stachura, D.L., Hu, Y., Bañuelos, K., . . . Traver, D.(2010). Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood, 116(19), 3944-3954. http://dx.doi.org/10.1182/blood-2010-03-267419

Bassity, E., & Clark, T.G. (2012). Functional Identification of Dendritic Cells in the Teleost Model, Rainbow Trout (Oncorhynchus mykiss). PLoS ONE, 7(3), e33196. http://dx.doi.org/10.1371/journal.pone.0033196

Bennani, N., Schmid-Alliana, A., & Lafaurie, M. (1995). Evaluation of phagocytic activity in a teleost fish, Dicentrarchus labrax. Fish & Shellfish Immunology,5(3), 237-246. http://dx.doi.org/10.1016/S1050-4648(05)80017-8

Bodammer, J.E., & Robohm, R.A. (1996). Ultrastructural observations on the phagocytic behavior of winter flounder Pleuronectes americanus peritoneal neutrophils and macrophages in vivo. Diseases of Aquatic Organisms, 25(3), 197-208. http://dx.doi.org/10.3354/dao025197

Bolis, C.L., Piccolella, M., Dalla Valle, A.Z., & Rankin, J.C. (2001). Fish as model in pharmacological and biological research. Pharmacological Research,44(4), 265-280. http://dx.doi.org/10.1006/phrs.2001.0845

Bonilla, F.A.O., Hans C. (2010). Adaptive immunity. Journal of Allergy and Clinical Immunology, 125(2), S33-S40. http://dx.doi.org/10.1016/j.jaci.2009.09.017

Boshra, H., Li, J., & Sunyer, J.O. (2006). Recent advances on the complement system of teleost fish. Fish & Shellfish Immunology, 20(2), 239-262. http://dx.doi.org/10.1016/j.fsi.2005.04.004

Boyd, B.L., Lee, T.M., Kruger, E.F., & Pinchuk, L.M. (2004). Cytopathic and non-cytopathic bovine viral diarrhoea virus biotypes affect fluid phase uptake and mannose receptor-mediated endocytosis in bovine monocytes. Veterinary Immunology and Immunopathology, 102(1–2), 53-65. http://dx.doi.org/10.1016/j.vetimm.2004.06.009

Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., . . . Zychlinsky, A. (2004). Neutrophil Extracellular Traps Kill Bacteria. Science, 303(5663), 1532-1535. http://dx.doi.org/10.1126/science.1092385

Brubacher, J.L., Secombes, C.J., Zou, J., & Bols, N.C. (2000). Constitutive and LPS-induced gene expression in a macrophage-like cell line from the rainbow trout (Oncorhynchus mykiss). Developmental Comparative Immunology, 24(6), 565-574. https://doi.org/10.1016/S0145-305X(00)00019-7

Brubaker, S.W., Bonham, K.S., Zanoni, I., & Kagan, J.C. (2015). Innate Immune Pattern Recognition: A Cell Biological Perspective. Annual Review of Immunology, 33, 257-290. http://dx.doi.org/10.1146/annurev-immunol-032414-112240

Carlson, R.L., Evans, D.L., & Graves, S.S. (1985). Nonspecific cytotoxic cells in fish (Ictalurus punctatus) V. Metabolic requirements of lysis. Developmental & Comparative Immunology, 9(2), 271-280. http://dx.doi.org/10.1016/0145-305X(85)90118-1

Chaplin, D.D. (2010). Overview of the Immune Response. The Journal of allergy and clinical immunology, 125(2 Suppl 2), S3-23. http://dx.doi.org/10.1016/j.jaci.2009.12.980

Chen, J., Lu, X.J., Yang, H.Y., & Shi, Y.H. (2010). An interaction between a C-type lectin receptor and leukocyte cell-derived chemotaxin 2 of ayu, Plecoglossus altivelis. Fish & Shellfish Immunology, 28(1), 245-248. https://doi.org/10.1016/j.fsi.2009.10.011

Chen, L., & Flies, D.B. (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature reviews.Immunology, 13(4), 227-242. http://dx.doi.org/10.1038/nri3405

Cooper, M.A., & Yokoyama, W.M. (2010). Memory-like Responses of Natural Killer Cells. Immunological Reviews, 235(1), 297-305. http://dx.doi.org/10.1111/j.0105-2896.2010.00891.x

da Silva, E.Z.M., Jamur, M.C., & Oliver, C. (2014). Mast Cell Function: A New Vision of an Old Cell. Journal of Histochemistry and Cytochemistry, 62(10), 698-738. http://dx.doi.org/10.1369/0022155414545334

Deretic, V., Saitoh, T., & Akira, S. (2013). Autophagy in Infection, inflammation, and immunity. Nature reviews. Immunology, 13(10), 722-737. http://dx.doi.org/10.1038/nri3532

Dezfuli, B.S., Giari, L., Lui, A., Lorenzoni, M., & Noga, E.J. (2011). Mast cell responses to Ergasilus (Copepoda), a gill ectoparasite of sea bream. Fish &Shellfish Immunology, 30(4), 1087-1094. http://dx.doi.org/10.1016/j.fsi.2011.02.005

Dezfuli, B.S., Manera, M., Giari, L., DePasquale, J.A., & Bosi, G. (2015). Occurrence of immune cells in the intestinal wall of Squalius cephalus infected with Pomphorhynchuslaevis.Fish&Shellfish Immunology, 47(1), 556-564. http://dx.doi.org/10.1016/j.fsi.2015.09.043

Dezfuli, B.S., Pironi, F., Giari, L., & Noga, E.J. (2010). Immunocytochemical localization of piscidin in mast cells of infected seabass gill. Fish & Shellfish Immunology, 28(3), 476-482. http://dx.doi.org/10.1016/j.fsi.2009.12.012

Dieter, S., & Katharina, H. (1997). Carp coccidiosis: activity of phagocytic cells from common carp infected with Goussia carpelli. Diseases of Aquatic Organisms, 31(2), 155-159. http://dx.doi.org/10.3354/dao031155

Do Vale, A., Afonso, A., & Silva, M.T. (2002). The professional phagocytes of sea bass (Dicentrarchus labrax L.): cytochemical characterisation of neutrophils and macrophages in the normal and inflamed peritoneal cavity. Fish & Shellfish Immunology, 13(3), 183-198. http://dx.doi.org/10.1006/fsim.2001.0394

Donald, L.E., & Jaso-Friedmann, L. (1992). Nonspecific cytotoxic cells as effectors of immunity in fish. Annual Review of Fish Diseases, 2, 109-121. http://dx.doi.org/10.1016/0959-8030(92)90059-7

Drummond, R.A., & Brown, G.D. (2011). The role of Dectin-1 in the host defence against fungal infections. Current Opinion in Microbiology, 14(4), 392-399. http://dx.doi.org/10.1016/j.mib.2011.07.001

Drutman, S.B., & Trombetta, E.S. (2010). Dendritic cells continue to capture and present antigens after maturation in vivo. Journal of Immunology (Baltimore, Md. : 1950), 185(4), 2140-2146. http://dx.doi.org/10.4049/jimmunol.1000642

Edholm, E.-S., Bengten, E., & Wilson, M. (2011). Insights into the function of IgD. Developmental & Comparative Immunology, 35(12), 1309-1316. http://dx.doi.org/10.1016/j.dci.2011.03.002

Ellis, A.E. (2001). Innate host defense mechanisms of fishagainst viruses and bacteria. Developmental & Comparative Immunology, 25(8), 827-839. http://dx.doi.org/10.1016/S0145-305X(01)00038-6

Este an, M.Á. (2012). An Overview of the Immunological Defenses in Fish Skin. ISRN Immunology, 2012, 29. http://dx.doi.org/10.5402/2012/853470

Este an, M.Á., Cuesta, A., Chaves-Pozo, E., & Meseguer, J. (2015). Phagocytosis in Teleosts. Implications of the New Cells Involved. Biology, 4(4), 907-922. http://dx.doi.org/10.3390/biology4040907

Esteban, M.A., & Meseguer, J. (1997). Factors influencing phagocytic response of macrophages from the sea bass (Dicentrarchus labrax L.): An ultrastructural and quantitative study. The Anatomical Record, 248(4), 533-541. http://dx.doi.org/10.1002/(sici)1097-0185(199708)248:4<533::aid-ar5>3.0.co;2-m

Esteban, M.A., Mulero, V., Munoz, J., & Meseguer, J. (1998). Methodological aspects of assessing phagocytosis of Vibrio anguillarum by leucocytes of gilthead seabream (Sparus aurata L.) by flow cytometry and electron microscopy. Cell Tissue Res, 293(1), 133-141. http://dx.doi.org/10.1007/s004410051105

Evans, D.L., Carlson, R.L., Graves, S.S., & Hogan, K.T. (1984). Nonspecific cytotoxic cells in fish (Ictalurus punctatus). IV. Target cell binding and recycling capacity. Developmental and comparative immunology, 8(4), 823-833. http://dx.doi.org/10.1016/0145-305x(84)90065-x

Fehres, C.M., Bruijns, S.C.M., Sotthewes, B.N., Kalay, H., Schaffer, L., Head, S.R., . . . van Kooyk, Y. (2015). Phenotypic and Functional Properties of Human Steady State CD14+ and CD1a+ Antigen Presenting Cells and Epidermal Langerhans Cells. PLoS ONE,10(11), e0143519. http://dx.doi.org/10.1371/journal.pone.0143519

Feng, B.-S., He, S.-H., Zheng, P.-Y., Wu, L., & Yang, P.-C. (2007). Mast Cells Play a Crucial Role in Staphylococcus aureus Peptidoglycan-Induced Diarrhea. The American Journal of Pathology, 171(2),537-547. http://dx.doi.org/10.2353/ajpath.2007.061274

Firdaus-Nawi, M., & Zamri-Saad, M. (2016). Major Components of Fish Immunity: A Review. Pertanika Journal of Tropical Agricultural Science, 39(4), 393-420.

Fischer, U., Utke, K., Somamoto, T., Köllner, B., Ototake, M., & Nakanishi, T. (2006). Cytotoxic activities of fish leucocytes. Fish & Shellfish Immunology, 20(2), 209-226. http://dx.doi.org/10.1016/j.fsi.2005.03.013

Flannigan, K.L., Geem, D., Harusato, A., & Denning, T.L. (2015). Intestinal Antigen-Presenting Cells: Key Regulators of Immune Homeostasis and Inflammation. The American Journal of Pathology, 185(7), 1809-1819. https://doi.org/10.1016/j.ajpath.2015.02.024

Flerova, E.A., & Balabanova, L.V. (2013). Ultrastructure of granulocytes of teleost fish (Salmoniformes, Cypriniformes, Perciformes). Journal of Evolutionary Biochemistry and Physiology, 49(2), 223-233. http://dx.doi.org/10.1134/s0022093013020126

Galindo-Villegas, J., Garcia-Garcia, E., & Mulero, V. (2016). Role of histamine in the regulation of intestinal immunity in fish. Developmental & Comparative Immunology, 64, 178-186. http://dx.doi.org/10.1016/j.dci.2016.02.013

García-Fernández, C., Sánchez, J.A., & Blanco, G. (2011). Characterization of the gilthead seabream (Sparus aurata L.) transferrin gene: Genomic structure, constitutive expression and SNP variation. Fish &Shellfish Immunology, 31(4), 548-556. http://dx.doi.org/10.1016/j.fsi.2011.07.003

Ginhoux, F., & Jung, S. (2014). Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol, 14(6), 392-404. http://dx.doi.org/10.1038/nri3671

Gordon, S. (2007). The macrophage: Past, present and future. European Journal of Immunology, 37(S1), S9-S17. http://dx.doi.org/10.1002/eji.200737638

Graves, S.S., Evans, D.L., Cobb, D., & Dawe, D.L. (1984). Nonspecific cytotoxic cells in fish (Ictalurus punctatus). I. Optimum requirements for target cell lysis. Developmental & Comparative Immunology, 8(2), 293-302. https://doi.org/10.1016/0145-305X(84)90036-3

Harris, J.E., & Hunt, S. (1975). The fine structure of the epidermis of two species of salmonid fish, the Atlantic salmon (Salmo salar L.) and the brown trout (Salmo trutta L.). Cell Tissue Res, 163(4), 535-543. http://dx.doi.org/10.1007/bf00218498

Hashimoto, D., Chow, A., Noizat, C., Teo, P., Beasley, M.B., Leboeuf, M., . . . Merad, M. (2013). Tissue resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes.Immunity,38(4),http://dx.doi.org/10.1016/j.immuni.2013.1004.1004.10.1016/j.immuni.2013.04.004

Havixbeck, J.J., & Barreda, D.R. (2015).Neutrophil Development, Migration, and Function inTeleostFish.Biology,4(4),715-734.http://dx.doi.org/10.3390/biology4040715

Heib, V., Becker, M., Taube, C., & Stassen, M. (2008). Advances in the understanding of mast cell function. British Journal of Haematology, 142(5), 683-694. http://dx.doi.org/10.1111/j.1365-2141.2008.07244.x

Henz, B.M., Maurer, M., Lippert, U., Worm, M., & Babina, M. (2001). Mast cells as initiators of immunity and host defense. Exp Dermatol, 10(1), 1-10. http://dx.doi.org/10.1034/j.1600-0625.2001.100101.x

Herbomel, P., Thisse, B., & Thisse, C. (1999). Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development, 126(17), 3735-3745.

Hine, P.M. (1992). The granulocytes of fish. Fish & Shellfish Immunology, 2(2), 79-98. http://dx.doi.org/10.1016/S1050-4648(05)80038-5

Hodgkinson, J., Grayfer, L., & Belosevic, M. (2015). Biology of Bony Fish Macrophages. Biology, 4(4), 881-906. http://dx.doi.org/10.3390/biology4040881

Igyártó, B.Z., & Kaplan, D.H. (2013). Antigen Presentation by Langerhans Cells. Current Opinion in Immunology, 25(1), 115-119. http://dx.doi.org/10.1016/j.coi.2012.11.007

Italiani, P., & Boraschi, D. (2014). From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Frontiers in Immunology, 5, 514. http://dx.doi.org/10.3389/fimmu.2014.00514

Jang, J.H., Kim, H., Kim, Y.J., & Cho, J.H. (2016). Molecular cloning and functional analysis of nucleotide-binding oligomerization domain-containing protein 1 in rainbow trout, Oncorhynchus mykiss. Fish & Shellfish Immunology, 51(Supplement C), 53-63. https://doi.org/10.1016/j.fsi.2016.02.012

Jaso-Friedmann, L., Leary, J.H., & Evans, D.L. (1993). Nonspecific Cytotoxic Cells in Fish: Antigenic Cross-Reactivity of a Function Associated Molecule with the Intermediate Filament Vimentin. Cellular Immunology, 148(1), 208-217. http://dx.doi.org/10.1006/cimm.1993.1103

Jault, C., Pichon, L., & Chluba, J. (2004). Toll-like receptor gene family and TIR-domain adapters in Danio rerio.Mol Immunol, 40(11), 759-771. https://doi.org/10.1016/j.molimm.2003.10.001

Jenkins, J.A., & Klesius, P.H. (1998). Elicitation of macrophages from the peritoneal cavity of channel catfish. J Aquat Anim Health, 10(1), 69-74. http://dx.doi.org/10.1577/1548-8667(1998)010<0069:eomftp>2.0.co;2

Kato, G., Kato, K., Saito, K., Pe, Y., Kondo, H., Aoki, T., & Hirono, I. (2011). Vaccine efficacy of Mycobacterium bovis BCG against Mycobacterium sp. infection in amberjack Seriola dumerili. Fish & Shellfish Immunology, 30(2), 467-472. https://doi.org/10.1016/j.fsi.2010.11.002

Kato, G., Kondo, H., Aoki, T., & Hirono, I. (2010). BCG vaccine confers adaptive immunity against Mycobacterium sp. infection in fish. Developmental Comparative Immunology, 34(2), 133-140. https://doi.org/10.1016/j.dci.2009.08.013

Katzenback, B.A., & Belosevic, M. (2009). Isolation and functional characterization of neutrophil-like cells, from goldfish (Carassius auratus L.) kidney. Developmental & Comparative Immunology, 33(4), 601-611. http://dx.doi.org/10.1016/j.dci.2008.10.011

Kawai, T., & Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognitionInt Immunol. 21:313. International Immunology, 21(4), 317-337. http://dx.doi.org/10.1093/intimm/dxp017

Keech, C.L., Pang, K.C., McCluskey, J., & Chen, W. (2010). Direct antigen presentation by DC shapes the functional CD8+ T-cell repertoire against the nuclear self-antigen La-SSB. European Journal of Immunology, 40(2), 330-338. http://dx.doi.org/10.1002/eji.200939522

Kordon, A.O., Abdelhamed, H., Ahmed, H., Park, J.Y., Karsi, A., & Pinchuk, L.M. (2018). Phagocytic and Bactericidal Properties of Channel Catfish Peritoneal Macrophages Exposed to Edwardsiella ictaluri Live Attenuated Vaccine and Wild-Type Strains. Frontiers in Microbiology, 8(2638). http://dx.doi.org/10.3389/fmicb.2017.02638

Kordon, A.O., Scott, M.A., Ibrahim, I., Abdelhamed, H., Ahmed, H., Baumgartner, W., . . . Pinchuk, L.M. (2016). Identification of Langerhans-like cells in the immunocompetent tissues of channel catfish, Ictalurus punctatus. Fish & Shellfish Immunology, 58, 253-258. http://dx.doi.org/10.1016/j.fsi.2016.09.033

Laing, K.J., Purcell, M.K., Winton, J.R., & Hansen, J.D. (2008). A genomic view of the NOD-like receptor family in teleost fish: identification of a novel NLR subfamily in zebrafish. BMC Evolutionary Biology, 8(1), 42. http://dx.doi.org/10.1186/1471-2148-8-42

Lamkanfi, M., & Dixit, Vishva M. (2014). Mechanisms and Functions of Inflammasomes. Cell, 157(5), 1013-1022. http://dx.doi.org/10.1016/j.cell.2014.04.007

Land, W.G. (2015). The Role of Damage-Associated Molecular Patterns (DAMPs) in Human Diseases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos University Medical Journal, 15(2), e157-e170.

Lau, S.K., Chu, P.G., & Weiss, L.M. (2008). Immunohistochemical Expression of Langerin in Langerhans Cell Histiocytosis and Non-Langerhans Cell Histiocytic Disorders. The American Journal of Surgical Pathology, 32(4), 615-619. http://dx.doi.org/10.1097/PAS.0b013e31815b212b

Lewis, K.L., Del Cid, N., & Traver, D. (2014). Perspectives on antigen presenting cells in zebrafish. Developmental & Comparative Immunology, 46(1), 63-73. https://doi.org/10.1016/j.dci.2014.03.010

Li J, DR., B., Yong-An, Z., Hani, B., E., G.A., Scott, L., . . . Oriol, S.J. (2006). B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nat Immunol, 7(10), 1116-1124. http://www.nature.com/ni/journal/v7/n10/suppinfo/ni1 389_S1.html

Li, M., Wang, Q.-l., Lu, Y., Chen, S.-l., Li, Q., & Sha, Z.-x. (2012). Expression profiles of NODs in channel catfish (Ictalurus punctatus) after infection with Edwardsiella tarda, Aeromonas hydrophila, Streptococcus iniae and channel catfish hemorrhage reovirus. Fish & Shellfish Immunology, 33(4), 1033-1041. https://doi.org/10.1016/j.fsi.2012.06.033

Li, Y., Li, Y., Cao, X., Jin, X., & Jin, T. (2017). Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cellular and Molecular Immunology, 14(1), 80-89. http://dx.doi.org/10.1038/cmi.2016.50

Lieschke, G.J., Oates, A.C., Crowhurst, M.O., Ward, A.C., Layton, J.E. (2001). Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood, 98(10), 3087-3096. http://dx.doi.org/10.1182/blood.V98.10.3087

Lin, A.-F., Xiang, L.-X., Wang, Q.-L., Dong, W.-R., Gong, Y.-F., & Shao, J.-Z. (2009). The DC-SIGN of Zebrafish: Insights into the Existence of a CD209 Homologue in a Lower Vertebrate and Its Involvement in Adaptive Immunity. The Journal of Immunology, 183(11), 7398-7410. http://dx.doi.org/10.4049/jimmunol.0803955

Lovy, J., Wright, G.M., & Speare, D.J. (2006). Morphological presentation of a dendritic-like cell within the gills of chinook salmon infected with Loma salmonae. Developmental & Comparative Immunology, 30(3), 259-263. http://dx.doi.org/10.1016/j.dci.2005.06.003

Lovy, J., Wright, G.M., & Speare, D.J. (2008). Comparative Cellular Morphology Suggesting the Existence of Resident Dendritic Cells Within Immune Organs of Salmonids. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 291(4), 456-462. http://dx.doi.org/10.1002/ar.20674

Lugo-Villarino, G., Balla, K.M., Stachura, D.L., Bañuelos, K., Werneck, M.B.F., & Traver, D. (2010). Identification of dendritic antigen-presenting cells in the zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 107(36), 15850-15855. http://dx.doi.org/10.1073/pnas.1000494107

Magnadottir, B. (2010). Immunological Control of Fish Diseases. Marine Biotechnology, 12(4), 361-379. http://dx.doi.org/10.1007/s10126-010-9279-x

Magnadóttir, B. (2006). Innate immunity of fish (overview). Fish & Shellfish Immunology, 20(2), 137-151. http://dx.doi.org/10.1016/j.fsi.2004.09.006

Malaviya, R., Ross, E.A., MacGregor, J.I., Ikeda, T., Little, J.R., Jakschik, B.A., & Abraham, S.N. (1994). Mast cell phagocytosis of FimH-expressing enterobacteria. The Journal of Immunology, 152(4), 1907-1914.

Malaviya, R., Twesten, N.J., Ross, E.A., Abraham, S.N., & Pfeifer, J.D. (1996). Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. The Journal of Immunology, 156(4), 1490-1496.

Marcus, A., & Raulet, D.H. (2013). Evidence for Natural Killer Cell Memory. Current biology : CB, 23(17), 10.1016/j.cub.2013.1007.1015. http://dx.doi.org/10.1016/j.cub.2013.07.015

Martinez, F.O., & Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Reports, 6, 13. http://dx.doi.org/10.12703/p6-13

Maurer, M., Theoharides, T., Granstein, R.D., Bischoff, S.C., Bienenstock, J., Henz, B., . . . Galli, S. (2003). What is the physiological function of mast cells? Exp Dermatol, 12(6), 886-886. http://dx.doi.org/10.1111/j.0906-6705.2003.0109a.x

Mc Dermott, R., Ziylan, U., Spehner, D., Bausinger, H., Lipsker, D., Mommaas, M., . . . Hanau, D. (2002). Birbeck Granules Are Subdomains of Endosomal Recycling Compartment in Human Epidermal Langerhans Cells, Which Form Where Langerin Accumulates. Molecular Biology of the Cell, 13(1), 317-335. http://dx.doi.org/10.1091/mbc.01-06-0300

Meijer, A.H., Gabby Krens, S.F., Medina Rodriguez, I.A., He, S., Bitter, W., Ewa Snaar-Jagalska, B., & Spaink, H.P. (2004). Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol, 40(11), 773-783. https://doi.org/10.1016/j.molimm.2003.10.003

Meng, Z., Zhang, X.-y., Guo, J., Xiang, L.-x., & Shao, J.-z. (2012). Scavenger Receptor in Fish Is a Lipopolysaccharide Recognition Molecule Involved in Negative Regulation of NF-κB Activation y Competing with TNF Receptor-Associated Factor 2 Recruitment into the TNF-α Signaling Pathway. The Journal of Immunology, 189(8), 4024-4039. http://dx.doi.org/10.4049/jimmunol.1201244

Meseguer, J., López-Ruiz, A., & Esteban, M.A. (1994). Cytochemical characterization of leucocytes from the seawater teleost, gilthead seabream (Sparus aurata L.). Histochemistry, 102(1), 37-44. http://dx.doi.org/10.1007/bf00271047

Mildner, A., & Jung, S. (2014). Development and Function of Dendritic Cell Subsets. Immunity, 40(5), 642-656. http://dx.doi.org/10.1016/j.immuni.2014.04.016

Mills, C.D. (2012). M1 and M2 Macrophages: Oracles of Health and Disease. Critical reviews in immunology, 326, 463-488. http://dx.doi.org/10.1615/CritRevImmunol.v32.i6.10

Mogensen, T.H. (2009). Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clinical Microbiology Reviews, 22(2), 240-273. http://dx.doi.org/10.1128/cmr.00046-08

Mulero, I., Sepulcre, M.P., Meseguer, J., García-Ayala, A., Mulero, V. (2007). Histamine is stored in mast cells of most evolutionarily advanced fish and regulates the fish inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19434-19439. http://dx.doi.org/10.1073/pnas.0704535104

Muñoz, P., Álvarez-Pellitero, P., & Sitjà-Bobadilla, A. (2000). Modulation of the in vitro activity of European sea bass (Dicentrarchus labrax L.) phagocytes by the myxosporean parasite Sphaerospora dicentrarchi (Myxosporea: Bivalvulida). Fish & Shellfish Immunology, 10(7), 567-581. http://dx.doi.org/10.1006/fsim.2000.0272

Murray, P.J., & Wynn, T.A. (2011). Protective and pathogenic functions of macrophage subsets. Nature reviews. Immunology, 11(11), 723-737. http://dx.doi.org/10.1038/nri3073

Nadler, M., Matthews, S., Turner, H., & Kinet, J. (2000). Signal transduction by the high-affinity immunoglobulin E receptor Fc epsilon RI: coupling form to function. Advances in Immunology, 76, 325- 355. http://dx.doi.org/10.1016/S0065-2776(01)76022-1

Netea, M.G. (2014). Immunological Memory in Innate Immunity. Journal of Innate Immunity, 6(2), 117-118. https://doi.org/10.1159/000357283

Netea, M.G., Quintin, J., & van der Meer, J.M. (2011). Trained Immunity: A Memory for Innate Host Defense. Cell host & microbe, 9(5), 355-361. http://dx.doi.org/10.1016/j.chom.2011.04.006

Neumann, N.F., Stafford, J.L., Barreda, D., Ainsworth, A.J.,Belosevic, M. (2001). Antimicrobial mechanisms of fish phagocytes and their role in host defense. Developmental & Comparative Immunology, 25(8), 807-825. https://doi.org/10.1016/S0145-305X(01)00037-4

Neumann, N.F., Stafford, J.L., & Belosevic, M. (2000). Biochemical and functional characterisation of macrophage stimulating factors secreted by mitogen-induced goldfish kidney leucocytes. Fish & Shellfish Immunology, 10(2), 167-186. http://dx.doi.org/10.1006/fsim.1999.0236

Nguyen-Chi, M., Laplace-Builhe, B., Travnickova, J., Luz-Crawford, P., Tejedor, G., Phan, Q.T., . . . Djouad, F. (2015). Identification of polarized macrophage Subsets in zebrafish. eLife, 4, e07288. https://doi.org/10.7554/eLife.07288

O’Sullivan, Timothy E., Sun, Joseph C., & Lanier, Lewis L. (2015). Natural Killer Cell Memory. Immunity, 43(4), 634-645.https://doi.org/10.1016/j.immuni.2015.09.013

Oshiumi, H., Tsujita, T., Shida, K., Matsumoto, M., Ikeo, K., & Seya, T. (2003). Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics, 54(11), 791-800. http://dx.doi.org/10.1007/s00251-002-0519-8

Øverland, H.S., Pettersen, E.F., Rønneseth, A., & Wergeland, H.I. (2010). Phagocytosis by B-cells and neutrophils in Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.). Fish & Shellfish Immunology, 28(1), 193-204. https://doi.org/10.1016/j.fsi.2009.10.021

Palić, D., Andreasen, C.B., Ostojić, J., Tell, R.M., & Roth, J.A. (2007). Zebrafish (Danio rerio) whole kidney assays to measure neutrophil extracellular trap release and degranulation of primary granules. Journal of Immunological Methods, 319(1), 87-97. http://dx.doi.org/10.1016/j.jim.2006.11.003

Panagos, P.G., Dobrinski, K.P., Chen, X., Grant, A.W., Traver, D., Djeu, J.Y., . . . Yoder, J.A. (2006). Immune-related, lectin-like receptors are differentially expressed in the myeloid and lymphoid lineages of zebrafish. Immunogenetics, 58(1), 31-40. http://dx.doi.org/10.1007/s00251-005-0064-3

Parra, D., Rieger, A.M., Li, J., Zhang, Y.-A., Randall, L.M., Hunter, C.A., . . . Sunyer, J.O. (2012). Pivotal Advance: Peritoneal cavity B-1 B cells havephagocytic and microbicidal capacities and present phagocytosed antigen to CD4(+) T cells. Journal of Leukocyte Biology, 91(4), 525-536. http://dx.doi.org/10.1189/jlb.0711372

Perdiguero, E.G., & Geissmann, F. (2016). The development and maintenance of resident macrophages. Nat Immunol, 17(1), 2-8. http://dx.doi.org/10.1038/ni.3341

Petit, J., & Wiegertjes, G.F. (2016). Long-lived effects of administering β-glucans: Indications for trained immunity in fish. Developmental & Comparative Immunology, 64(Supplement C), 93-102. https://doi.org/10.1016/j.dci.2016.03.003

Pijanowski, L., Golbach, L., Kolaczkowska, E., Scheer, M., Verburg-van Kemenade, B.M.L., & Chadzinska, M. (2013). Carp neutrophilic granulocytes form extracellular traps via ROS-dependent and independent pathways. Fish & Shellfish Immunology, 34(5), 1244-1252. http://dx.doi.org/10.1016/j.fsi.2013.02.010

Poynter, S., Lisser, G., Monjo, A., & DeWitte-Orr, S. (2015). Sensors of Infection: Viral Nucleic Acid PRRs in Fish. Biology, 4(3), 460-493. http://dx.doi.org/http://dx.doi.org/10.3390/biology403 0460

Qiu, W., Liu, S., Chen, J., Hu, L., Wu, M., & Yang, M. (2016). The primary culture of carp (Cyprinus carpio) macrophages and the verification of its phagocytosis activity. In Vitro Cellular & Developmental Biology - Animal, 52(1), 10-19. http://dx.doi.org/10.1007/s11626-015-9942-7

Quiniou, S.M.A., Boudinot, P., & Bengtén, E. (2013). Comprehensive survey and genomic characterization of Toll-like receptors (TLRs) in channel catfish, Ictalurus punctatus: identification of novel fish TLRs. Immunogenetics, 65(7), 511-530. http://dx.doi.org/10.1007/s00251-013-0694-9

Quintin, J., Saeed, S., Martens, J.H.A., Giamarellos-Bourboulis, E.J., Ifrim, D.C., Logie, C., . . . Netea, M.G. (2012). Candida albicans Infection Affords Protection against Reinfection via Functional Reprogramming of Monocytes. Cell host & microbe,12(2), 10.1016/j.chom.2012.1006.1006. http://dx.doi.org/10.1016/j.chom.2012.06.006

Rabinovitch, M. (1995). Professional and non-professional phagocytes: an introduction. Trends in Cell Biology, 5(3), 85-87. https://doi.org/10.1016/S0962-8924(00)88955-2

Rashid, M.M., Sardar M., & M.R., I. (2002). In vitro phagocytic study of blood leucocytes and peritoneal macrophages of walking catfish Clarias batrachus against Aeromonas hydrophila and Eacherichia coli. Bangladesh J. Fish. Res., 6(1), 35-41.

Reite, O.B. (1998). Mast cells/eosinophilic granule cells of teleostean fish: a review focusing on staining properties and functional responses. Fish & Shellfish Immunology, 8(7), 489-513. http://dx.doi.org/10.1006/fsim.1998.0162

Reite, O.B. (2005). The rodlet cells of teleostean fish: their potential role in host defence in relation to the role of mast cells/eosinophilic granule cells. Fish & Shellfish Immunology, 19(3), 253-267. http://dx.doi.org/10.1016/j.fsi.2005.01.002

Reite, O.B., & Evensen, Ø. (2006). Inflammatory cells of teleostean fish: A review focusing on mast cells/eosinophilic granule cells and rodlet cells. Fish& Shellfish Immunology, 20(2), 192-208. http://dx.doi.org/10.1016/j.fsi.2005.01.012

Rieger, A.M., Konowalchuk, J.D., Grayfer, L., Katzenback, B.A., Havixbeck, J.J., Kiemele, M.D., . . . Barreda, D.R. (2012). Fish and Mammalian Phagocytes Differentially Regulate Pro-Inflammatory and Homeostatic Responses In Vivo. PLoS ONE, 7(10), e47070. http://dx.doi.org/10.1371/journal.pone.0047070

Roach, J.C., Glusman, G., Rowen, L., Kaur, A., Purcell, M.K., Smith, K.D., . . . Aderem, A. (2005). The evolution of vertebrate Toll-like receptors. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9577-9582. http://dx.doi.org/10.1073/pnas.0502272102

Rodr guez, A., Este an, M.A., & Meseguer, J. (2003). A mannose-receptor is possibly involved in the phagocytosis of Saccharomyces cerevisiae by seabream (Sparus aurata L.) leucocytes. Fish & Shellfish Immunology, 14(5), 375-388. https://doi.org/10.1006/fsim.2002.0446

Rombout, J.H.W.M., Huttenhuis, H.B.T., Picchietti, S., & Scapigliati, G. (2005). Phylogeny and ontogeny of fish leucocytes. Fish & Shellfish Immunology, 19(5), 441-455. http://dx.doi.org/10.1016/j.fsi.2005.03.007

Rombout, J.H.W.M., Taverne, N., van de Kamp, M., & Taverne-Thiele, A.J. (1993). Differences in mucus and serum immunoglobulin of carp (Cyprinus carpio L.). Developmental & Comparative Immunology, 17(4), 309-317. http://dx.doi.org/10.1016/0145-305X(93)90003-9

Rosin, D.L., & Okusa, M.D. (2011). Dangers Within: DAMP Responses to Damage and Cell Death in Kidney Disease. Journal of the American Society of Nephrology : JASN, 22(3), 416-425. http://dx.doi.org/10.1681/asn.2010040430

Rothstein, T.L., Griffin, D.O., Holodick, N.E., Quach, T.D., Kaku, H. (2013). Human B-1 cells take the stage. Annals of the New York Academy of Sciences, 1285, 97-114. http://dx.doi.org/10.1111/nyas.12137

Santoni, G., Cardinali, C., Morelli, M.B., Santoni, M., Nabissi, M., & Amantini, C. (2015). Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. Journal of Neuroinflammation, 12, 21. http://dx.doi.org/10.1186/s12974-015-0239-2

Saurabh, S., & Sahoo, P.K. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, 39(3), 223-239. http://dx.doi.org/10.1111/j.1365-2109.2007.01883.x

Schultz, K.T., & Grieder, F. (1987). Structure and Function of the Immune System. Toxicologic Pathology, 15(3), 262-264. http://dx.doi.org/10.1177/019262338701500301

Serbina, N.V., Jia, T., Hohl, T.M., & Pamer, E.G. (2008). Monocyte-Mediated Defense Against Microbial Pathogens. Annual Review of Immunology, 26, 421- 452.http://dx.doi.org/10.1146/annurev.immunol.26.02160 7.090326

Shao, T., Zhu, L.-Y., Nie, L., Shi, W., Dong, W.-R., Xiang, L.-X., & Shao, J.-Z. (2015). Characterization of surface phenotypic molecules of teleost dendritic cells. Developmental & Comparative Immunology, 49(1), 38-43. http://dx.doi.org/10.1016/j.dci.2014.11.010

Sharp, G.J.E., & Secombes, C.J. (1993). The role of reactive Comparative Dendritic Cell Biology of Veterinary oxygen species in the killing of the bacterial fish Mammals. Annual Review of Animal Biosciences, 3, pathogen Aeromonas salmonicida by rainbow trout 533-557. http://dx.doi.org/10.1146/annurev-animal- macrophages. Fish & Shellfish Immunology, 3(2), 022114-111009 119-129. http://dx.doi.org/10.1006/fsim.1993.1013.

Shen, L., Stuge, T.B., Zhou, H., Khayat, M., Barker, K.S., Quiniou, S.M.A., . . . Miller, N.W. (2002). Channel catfish cytotoxic cells: a mini-review. Developmental & Comparative Immunology, 26(2), 141-149. http://dx.doi.org/10.1016/S0145-305X(01)00056-8

Silva-Gomes, S., Decout, A., & Nigou, J. (2015). Pathogen- Associated Molecular Patterns (PAMPs). In M. Parnham (Ed.), Encyclopedia of Inflammatory Diseases (pp. 1-16). Basel: Springer Basel. Silva, M., & Correia-Neves, M. (2012). Neutrophils and Macrophages: the Main Partners of Phagocyte Cell Systems. Frontiers in Immunology, 3(174). http://dx.doi.org/10.3389/fimmu.2012.00174

Smith, P.D., Smythies, L.E., Shen, R., Greenwell-Wild, T., Gliozzi, M., & Wahl, S.M. (2011). Intestinal Macrophages and Response to Microbial Encroachment. Mucosal immunology, 4(1), 10.1038/mi.2010.1066. http://dx.doi.org/10.1038/mi.2010.66

Soanes, K.H., Figuereido, K., Richards, R.C., Mattatall, N.R., & Ewart, K.V. (2004). Sequence and expression of C-type lectin receptors in Atlantic salmon (Salmo salar). Immunogenetics, 56(8), 572-584. http://dx.doi.org/10.1007/s00251-004-0719-5

Souwer, Y., Griekspoor, A., Jorritsma, T., de Wit, J., Janssen, H., Neefjes, J., & van Ham, S.M. (2009). B Cell Receptor-Mediated Internalization of Salmonella: A Novel Pathway for Autonomous B Cell Activation and Antibody Production. The Journal of Immunology, 182(12), 7473-7481. http://dx.doi.org/10.4049/jimmunol.0802831

Soza-Ried, C., Hess, I., Netuschil, N., Schorpp, M., & Boehm, T. (2010). Essential role of c-myb in definitive hematopoiesis is evolutionarily conserved. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17304-17308. http://dx.doi.org/10.1073/pnas.1004640107

St John, A.L., & Abraham, S.N. (2013). Innate Immunity and its Regulation by Mast Cells. Journal of Immunology (Baltimore, Md. : 1950), 190(9), 4458- 4463. http://dx.doi.org/10.4049/jimmunol.1203420

Stassen, M., Hültner, L., Müller, C., & Schmitt, E. (2002). Mast cells and inflammation. Archivum immunologiae et therapiae experimentalis, 50(3), 179-185.

Stein, C., Caccamo, M., Laird, G., & Leptin, M. (2007). Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biology, 8(11), R251- R251. http://dx.doi.org/10.1186/gb-2007-8-11-r251

Sugamata, R., Suetake, H., Kikuchi, K., & Suzuki, Y. (2009). Teleost B7 Expressed on Monocytes Regulates T Cell Responses. The Journal of Immunology, 182(11), 6799-6806. http://dx.doi.org/10.4049/jimmunol.0803371

Sugita, K., Kabashima, K., Atarashi, K., Shimauchi, T., Kobayashi, M., & Tokura, Y. (2007). Innate immunity mediated by epidermal keratinocytes promotes acquired immunity involving Langerhans cells and T cells in the skin. Clinical and Experimental Immunology,147(1) 176-183. http://dx.doi.org/10.1111/j.1365-2249.2006.03258.x

Summerfield, A., Auray, G., & Ricklin, M. (2015). Comparative Dendritic Cell Biology of Veterinary Mammals. Annual Review of Animal Biosciences, 3, 533-557. http://dx.doi.org/10.1146/annurev-animal- 022114-111009

Sun, J.C., Beilke, J.N., & Lanier, L.L. (2009). Adaptive Immune Features of Natural Killer Cells. Nature,457(7229),557-561. http://dx.doi.org/10.1038/nature07665

Sun, J.C., Ugolini, S., & Vivier, E. (2014). Immunological memory within the innate immune system. The EMBO Journal,33(12),1295-1303. http://dx.doi.org/10.1002/embj.201387651

Sunyer, J.O. (2012). Evolutionary and Functional Relationships of B Cells from Fish and Mammals: Insights into their Novel Roles in Phagocytosis and Presentation of Particulate Antigen. Infectious disorders drug targets, 12(3), 200-212. http://dx.doi.org/10.2174/187152612800564419

Sunyer, J.O. (2013). Fishing for mammalian paradigms in the teleost immune system. Nature immunology, 14(4), 320-326. http://dx.doi.org/10.1038/ni.2549

Tafalla, C., González, L., Castro, R., & Granja, A.G. (2017). B Cell-Activating Factor Regulates Different Aspects of B Cell Functionality and Is Produced by a Subset of Splenic B Cells in Teleost Fish. Frontiers in Immunology, 8(295). http://dx.doi.org/10.3389/fimmu.2017.00295

Taghavi, M., Khosravi, A., Mortaz, E., Nikaein, D., & Athari, S.S. (2017). Role of pathogen-associated molecular patterns (PAMPS) in immune responses to fungal infections. European Journal of Pharmacology, 808, 8-13. http://dx.doi.org/10.1016/j.ejphar.2016.11.013

Takano, T., Kondo, H., Hirono, I., Endo, M., Saito-Taki, T., & Aoki, T. (2011). Toll-like receptors in teleosts. Diseases in Asian Aquaculture VII. Fish Health Section, Asian Fisheries Society, Malaysia, 197-208.

Takeuchi, O., & Akira, S. (2010). Pattern Recognition Receptors and Inflammation. Cell, 140(6), 805-820. http://dx.doi.org/10.1016/j.cell.2010.01.022

Tavares-Dias, M. (2006). Cytochemical method for staining fish basophils. Journal of Fish Biology, 69(1), 312- 317. http://dx.doi.org/10.1111/j.1095- 8649.2006.01106.x

Thompson, M.R., Kaminski, J.J., Kurt-Jones, E.A., & Fitzgerald, K.A. (2011). Pattern Recognition Receptors and the Innate Immune Response to Viral Infection. Viruses, 3(6), 920-940. http://dx.doi.org/10.3390/v3060920

Tort L, B.J.M.S. (2003). Fish immune system. A crossroads between innate and adaptive responses. Inmunologia, 22(3), 277-286.

Turvey, S.E., & Broide, D.H. (2010). Chapter 2: Innate Immunity. The Journal of allergy and clinical immunology, 125(2 Suppl 2), S24-S32. http://dx.doi.org/10.1016/j.jaci.2009.07.016

Uribe, C., Folch, H., Enriquez, R., & Moran, G. (2011). Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina, 56(10), 486-503. http://dx.doi.org/10.17221/3294-VETMED

Vadstein, O., Bergh, Ø., Gatesoupe, F.-J., Galindo-Villegas, J., Mulero, V., Picchietti, S., . . . Bossier, P. (2013). Microbiology and immunology of fish larvae. Reviews in Aquaculture, 5, S1-S25. http://dx.doi.org/10.1111/j.1753-5131.2012.01082.x

Valladeau, J., Ravel, O., Dezutter-Dambuyant, C., Moore, K., Kleijmeer, M., Liu, Y., . . . Saeland, S. (2000).Langerin, a Novel C-Type Lectin Specific to Langerhans Cells, Is an Endocytic Receptor that Induces the Formation of Birbeck Granules. Immunity, 12(1), 71-81. http://dx.doi.org/10.1016/S1074- 7613(00)80160-0

Vallejo, A.N., & Ellis, A.E. (1989). Ultrastructural study of the response of eosinophil granule cells to Aeromonas salmonicida extracellular products and histamine liberators in rainbow trout Salmo gairdneri richardson. Developmental & Comparative Immunology, 13(2), 133-148. http://dx.doi.org/10.1016/0145- 305X(89)90028-1

Vallejo, A.N., Miller, N.W., Harvey, N.E., Cuchens, M.A., Warr, G.W., & Clem, L.W. (1992). Cellular Pathway(S) of Antigen Processing and Presentation in Fish APC: Endosomal Involvement and Cell-Free Antigen Presentation. Developmental Immunology, 3(1), 51-65. http://dx.doi.org/10.1155/1992/82525

van der Vaart, M., Spaink, H.P., & Meijer, A.H. (2012). Pathogen Recognition and Activation of the Innate Immune Response in Zebrafish. Advances in Hematology, 2012, 19. http://dx.doi.org/10.1155/2012/159807

van Furth, R., Cohn, Z.A., Hirsch, J.G., Humphrey, J.H., Spector, W.G., & Langevoort, H.L. (1972). Le systéme phagocytaire mononucléaire: nouvelle classification des macrophages, des monocytes et de leurs cellules souches. Bulletin of the World Health Organization, 47(5), 651-658.

Varol, C., Mildner, A., & Jung, S. (2015). Macrophages: Development and Tissue Specialization. Annual Review of Immunology, 33, 643-675 http://dx.doi.org/10.1146/annurev-immunol-032414- 112220

Vyas, J.M., Van der Veen, A.G., & Ploegh, H.L. (2008). The known unknowns of antigen processing and presentation. Nature reviews. Immunology, 8(8), 607- 618. http://dx.doi.org/10.1038/nri2368

Wang, L., Liu, L., Zhou, Y., Zhao, X., Xi, M., Wei, S., . . . Lin, L. (2014). Molecular cloning and expression analysis of mannose receptor C type 1 in grass carp (Ctenopharyngodon idella). Developmental & Comparative Immunology, 43(1), 54-58. https://doi.org/10.1016/j.dci.2013.10.006

Whyte, S.K. (2007). The innate immune response of finfish – A review of current knowledge. Fish & Shellfish Immunology, 23(6), 1127-1151. http://dx.doi.org/10.1016/j.fsi.2007.06.005

Wilhelm, F.D. (2007). Reactive oxygen species, antioxidants and fish mitochondria. Frontiers in Bioscience, 12, 1229-1237. http://dx.doi.org/10.2741/2141

Wittamer, V., Bertrand, J.Y., Gutschow, P.W., & Traver, D. (2011). Characterization of the mononuclear phagocyte 1139 system in zebrafish. Blood, 117(26), 7126-7135. http://dx.doi.org/10.1182/blood-2010-11-321448

Wu, Z., & Kaiser, P. (2011). Antigen presenting cells in a non-mammalian model system, the chicken. Immunobiology, 216(11), 1177-1183. https://doi.org/10.1016/j.imbio.2011.05.012

Xie, J., Hodgkinson, J.W., Katzenback, B.A., Kovacevic, N., & Belosevic, M. (2013). Characterization of three Nod-like receptors and their role in antimicrobial responses of goldfish (Carassius auratus L.) macrophages to Aeromonas salmonicida and Mycobacterium marinum. Developmental & Comparative Immunology, 39(3), 180-187. https://doi.org/10.1016/j.dci.2012.11.005

Yang, G.-J., Lu, X.-J., Chen, Q., & Chen, J. (2015). Molecular characterization and functional analysis of a novel C-type lectin receptor-like gene from a teleost fish, Plecoglossus altivelis. Fish & Shellfish Immunology, 44(2), 603-610. https://doi.org/10.1016/j.fsi.2015.03.037

Zhang, X. (2013). Regulatory functions of innate-like B cells. Cell Mol Immunol, 10(2), 113-121. http://dx.doi.org/10.1038/cmi.2012.63

Zhou, D., Huang, C., Lin, Z., Zhan, S., Kong, L., Fang, C., & Li, J. (2014). Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cellular Signalling, 26(2), 192-197. http://dx.doi.org/10.1016/j.cellsig.2013.11.004

Zhu, L.-y., Lin, A.-f., Shao, T., Nie, L., Dong, W.-r., Xiang, L.-x., & Shao, J.-z. (2014). B Cells in Teleost Fish Act as Pivotal Initiating APCs in Priming Adaptive Immunity: An Evolutionary Perspective on the Origin of the B-1 Cell Subset and B7 Molecules. The Journal of Immunology, 192(6), 2699-2714. http://dx.doi.org/10.4049/jimmunol.1301312

Zhu, L.-y., Nie, L., Shao, T., Dong, W.-r., Xiang, L.-x., & Shao, J.-z. (2013). B cells in primitive vertebrate act as pivotal antigen presenting cells in priming adaptive immunity (P5035). The Journal of Immunology, 190(1 Supplement), 110.118-110.118.

Zimmerman, L.M., Vogel, L.A., & Bowden, R.M. (2010). Understanding the vertebrate immune system: insights from the reptilian perspective. The Journal of Experimental Biology, 213(5), 661-671. http://dx.doi.org/10.1242/jeb.038315

Zoccola, E., Delamare-Deboutteville, J., & Barnes, A.C. (2015). Identification of Barramundi (Lates calcarifer) DC-SCRIPT, a Specific Molecular Marker for Dendritic Cells in Fish. PLoS ONE, 10(7), e0132687. http://dx.doi.org/10.1371/journal.pone.0132687
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Distribution of Ascidians with a New Record of the Non-Indigenous Species Polyclinum constellatum Savigny, 1816 from the Aegean Coast of Turkey

Sinem Aydın ÖNEN

Effects of Salinities and Diets on Growth of Juvenile Hybrid Grouper, Epinephelus fuscoguttatus × E. lanceolattus

Noorashikin Md. NOOR, Simon Kumar DAS, Zaidi Che COB, Mazlan A. GHAFFAR

Cloning, Expression, and Functional Analyses of MHC Class II A in Ayu, Plecoglossus altivelis

Changhong Lİ, Feifei DİNG, Jie CHEN, Libin MO, Jiong CHEN

Design Characteristics of Submersible Aerator

Jayraj P, Supha Manash ROY, Chanchal Kumar MUKHERJEE, Bimal Chandra MAL

Microsatellite Diversity and Population Structure of Hypophthalmicthys molitrix in Hatchery Populations of Punjab

Nadia NAZİSH, Khalid ABBAS, Sajid ABBAS, Muhammad Anjum ZİA

Quantification of Astaxanthin and Canthaxanthin in Muscle Tissues of Rainbow Trout Oncorhynchus mykiss and Brook Trout Salvelinus fontinalis

Milena TZANOVA

Comparative Growth Performance, in vivo Digestibility and Enzyme Activities of Labeo rohita Fed with DORB Based Formulated Diet and Commercial Carp Feed

Amit RANJAN, Narottam Prasad SAHU, Ashutosh Dharmendra DEO, Sarvendra KUMAR

Microsatellite DNA Marker Analysis of Genetic Variation in Wild and Hatchery Populations of Caspian Kutum (Rutilus kutum)

Hadiseh KASHİRİ, Ali SHABANİ, Saeed GORGİN, Mohamad REZAİİ, Ahmad Reza JABALE

> Innate Immune Responses in Fish: Antigen Presenting Cells and Professional Phagocytes

Adef Othan KORDON, Attila KARSİ, Lesya PINCHUK

Assessment of Temporal Ecosystem Responses to Phytoplankton via Photosynthetic Pigments under a Potential Oil Spill Event in Iskenderun Bay Introduction

Koray ÖZHAN