Exocrine Pancreas Development and Trypsin Expression in Cultured European Sea Bass (Dicentrarchus labrax) Larvae

Bu çalışmada açılımdan 40. güne kadar levrek (D. labrax) larvalarında ekzokrin pankreasın ontogenik gelişimi ve oluşum aşamaları incelenmiştir. Levrek larvalarında pankreasın fonksiyonel gelişimi tanımlamak için histolojik ve tripsinojen aktivitesinin incelendiği enzimatik teknikler kullanılmıştır. İlk pankreas oluşumu sindirim tüpünün dorsal bölgesinde tabakalaşmış olarak izlenmiştir. Eksokrin hücre farklılaşmasının ilk işaretinin kutuplaşma olduğu gözlenmiştir. 6. günde ilk zimojen granülleri ve ekzokrine polihedarl hücreli pankreas karaciğerin posteiorunda ve dorsal bölgesinde konumlanmış yoğun bir oluşum olarak gözlenmiştir. Aynı zamanda, ilk olarak anüs sonrasında ağız açılmış ve larvaların total boyu 3,47±0,26 mm olarak tespit edilmiştir. Larval metamorfoza kadar, pankreas farklılaşmış ve midenin mesenterik bölgesinde, bağırsağın ve pilorik çekumun üst kısmında yayılmış olarak izlenir. Öte yandan, zimojen granüllerinin sayısının ve hacminin artması ve beraberinde taşınan içerik miktarının artışı hücresel aktivitede meydana gelen artışın açık bir göstergesidir. Tripsin aktivitesi açılımın hemen ardından (42,54±6,8 mU/mg $protein^{-1}$) larva boyu ortalaması 4,28±0,2 mm iken tespit edilmiş ve özellikle eksojen besin alımının başlamasıyla birlikte sonraki günlerde düzenli artış göstermiştir. En yüksek tripsin aktivitesi 30. günde 122,45±11,76 mU/mg $protein^{-1}$ olarak tespit edilmiştir. Sonuçta, levrek larva üretim periyodunda eksokrin pankreas gelişimindeki en kritik aşamanın zimojen granüllerinin oluşumu olduğu ve tripsin aktivitesinin açılımın hemen ardından başlayıp larval gelişime bağlı olarak artmaya devam ettiği bulunmuştur.

Kültürü yapılan Levrek (Dicentrarchus labrax) larvalarında ekzokrin pankreas gelişimi ve tripsin aktivitesi

The ontogenesis and formation stages of exocrine pancreas in European sea bass (D. labrax) larvae were investigated from hatching to 40 days after hatching (DAH). Histological and enzymatical techniques were used to explain the functional development of the pancreas in D. labrax with the expression of trypsinogen activity. The incipient pancreas appeared as a lamination of the dorsal wall of the digestive tract. It was observed that the primary visible indication of exocrine cell differentiation was polarization. The first zymogen granules and pancreas with exocrine polyhedral cells appeared on 6 DAH and became abundant as a compact structure located dorsal and slightly posterior to the liver. At the same time, firstly, anus and then mouth were opened, and total lengths of larvae were determined as 3.47±0.26 mm. Until larval metamorphosis, the pancreas became diffuse, spreading throughout the mesentery enclosure, the stomach, the upper intestine and the pyloric caeca. On the other hand, zymogen granules were more numerous and larger, and a greater quantity of material was carried by the ducts, indicating an increased cellular activity. The specific activity of trypsin was determined as early as after hatching (42.54±6.8 mU/mg $protein^{-1}$) at 4.28±0.2 mm total length of larvae and increased immediately during the following days especially after exogenous feeding. The highest tryptic activity was detected on 30 DAH as 122.45±11.76 mU/mg $protein^{-1}$. It is concluded that exocrine pancreas organogenesis is the main critical step of the zymogen granules and trypsin activity is present as early as after hatching and continuously increasing with larval period of D. labrax.

___

  • Barnabe´, G. and Billard, R. 1984. L’aquaculture du bar et des sparide´s. Ed. INRA Publ. Paris, 542 pp.
  • Beccaria, C., Diaz, J.P., Connes, R. and Chatain, B. 1991. Organogenesis of the exocrine pancreas in the sea bass, Dicentrarchus labrax L. reared extensively and intensively. Aquaculture, 99: 339-354.
  • Bradford, M.M. 1976. A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • Cahu, C.L. and Zambonino Infante, J.L. 1994. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comparative Biochemistry and Physiology, 109: 213– 222.
  • Cahu, C.L. and Zambonino Infante, J.L. 2001. Substitution of live food by formulated diets in marine fish larvae. Aquaculture, 200: 161–180.
  • Caruso, G., Genovese, L., Micale, V., Spedicato, M.T. and Mancuso, M. 2001. Preliminary investigation of the digestive enzymes in Pagellus erythrinus (Linneo 1758) larvae. Mar. Freshw. Behav. Physiol., 34: 265– 268.
  • Chen, B.N., Qin, J.G., Kumar, S.M., Hutchinson, W.G. and Clarke, S.M. 2006. Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae. Aquaculture, 260: 264–271.
  • Diaz, M., Moyano, F.J., Garcia-Carreno, F.L., Alarcon, F.J. and Sarasquete, M.C. 1997. Substrate SDS-PAGE determination of protease activity through larval development in sea bream. Aquaculture International, 5: 461–471.
  • Drossou, A., Ueberschär, B., Rosenthal, H. and Herzig, K. 2006. Ontogenetic development of the proteolytic digestion activities in larvae of Oreochromis niloticus fed with different diets. Aquaculture, 256: 479–488.
  • Elbal, M.T., Garcia Hernandez, M.P., Lozano, M.T. and Agulleiro, B. 2004. Development of the digestive tract of gilthead sea bream (Sparus aurata L.). Light and electron microscopic studies. Aquaculture, 234: 215- 238.
  • Falk-Petersen, I.B. and Hansen, T.K. 2001. Organ differentiation in newly hatched common wolffish. Journal of Fish Biology, 59:1465-1482.
  • Guyot, E., Dı´az, J.P. and Connes, R. 1995. Organogenesis of the liver in sea bream Sparus aurata. Journal of Fish Biology, 47: 427– 437.
  • Hamlin, H.J., Hunt von Herbing, I. and Kling, L.J. 2000. Histological and morphological evaluations of the digestive tract and associated organs of haddock throughout post-hatching ontogeny. Journal of Fish Biology, 57: 716-732.
  • Kjørsvik, E., Pittman, K. and Pavlov, D. 2004. From fertilization to the end of metamorphosis - functional development. In: E. Moksness, E. Kjørsvik and Y. Olsen (Eds.), Culture of cold-water marine fish. Blackwell Publishing Ltd., Oxford: 204-269.
  • Kolkovski, S. 2001. Digestive enzymes in fish larvae and juveniles-implications and application to formulated diets. Aquaculture, 200: 181–201.
  • Lazo, J.P., Mendoza, R., Holt, G.J., Aguilera, C. and Arnold, C.R. 2007. Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture, 265: 194–205.
  • Micale, V., Garaffo, M., Genovese, L., Spedicato, M.T. and Muglia, U. 2006. The ontogeny of the alimentary tract during larval development in common pandora Pagellus erythrinus L. Aquaculture, 251: 354-365.
  • Micale, V., Di Giancamillo, A., Domeneghini, C., Mylonas, C.C., Nomikos, N., Papadakis, I.E. and Muglia, U. 2008. Ontogeny of the digestive tract in sharpsnout sea bream Diplodus puntazzo (Cetti, 1777). Histology and Histopathology, 23: 1077–1091.
  • Morrison, M. 1993. Histology of the Atlantic cod, Gadus morhua: an atlas. Part 4. Eleutheroembryo and larva. Canadian Special Publication of Fisheries and Aquatic Sciences, 119C: 496.
  • Moyano, F.J., Diaz, M., Alarcon, F.J. and Sarasquete, M.C. 1996. Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiology and Biochemistry, 15: 121– 130.
  • Nolting, M., Ueberschär, B. and Rosenthal, H. 1999. Trypsin activity and physiological aspects in larval rearing of European sea bass (Dicentrarchus labrax) using live prey and compound diets. Journal of Applied Ichthyology, 15: 138–142.
  • Pavlov, D.A. 1986. Developing the biotechnology of culturing White Sea wolffish, Anarhichas lupus marisalbi. II. Ecomorphological peculiarities of early ontogeny. Journal of Ichthyology, 26(6):156-169.
  • Pedersen, B.H. and Andersen, K.P. 1992. Induction of trypsinogen secretion in herring larvae (Clupea harengus). Marine Biology, 112: 559–565.
  • Ribeiro, L., Sarasquete, C. and Dinis, M.T. 1999. Histological and histochemical development of the digestive system of Solea senegalensis (Kaup, 1858) larvae. Aquaculture, 171: 293– 308.
  • Sarasquete, C., Polo, A. and Yu´fera, M. 1995. Histology and histochemistry of the development of the digestive system of larval gilthead seabream Sparus aurata L. Aquaculture, 130: 79–92.
  • Santamaria, C.A., Marin de Mateo, M., Traveset, R., Sala, R., Grau, A., Pastor, E., Sarasquete, C. and Crespo, S. 2004. Larval organogenesis in common dentex Dentex dentex L. (Sparidae): histological and histochemical aspects. Aquaculture, 237: 207–228.
  • Suzer, C., Fırat, K. and Saka, Ş. 2006. Ontogenic development of the digestive enzymes in common pandora, Pagellus erythrinus, L. larvae. Aquaculture Research, 37: 1565–1571.
  • Suzer, C., Aktülün, S., Çoban, D., Kamacı, H.O., Saka, Ş., Fırat, K. and Alpbaz, A. 2007a. Digestive enzyme activities in sharpsnout seabream (Diplodus puntazzo) larvae. Comparative Biochemistry and Physiology, 148: 470–477.
  • Suzer, C., Kamacı, H.O., Çoban, D., Saka, Ş., Fırat, K., Ozkara, B. and Ozkara, A. 2007b. Digestive enzyme activity of the red porgy (Pagrus pagrus, L.) during larval development under culture conditions. Aquaculture Research, 38: 1178–1785.
  • Suzer, C., Firat, K., Saka, S. and Karacaoglan, A. 2007c. Effects of early weaning on growth and digestive enzyme activity in larvae of Sea Bass (Dicentrarchus labrax L.). The Israeli Journal of Aquaculture– Bamidgeh, 59(2): 81-90.
  • Tseng, H.C., Grendell, J.H. and Rothman, S.S. 1982. Food, deodenal extracts, and enzyme secretion by the pancreas. American Journal of Physiology, 243: 304– 312.
  • Ueberschär, B. 1993. Measurement of proteolytic enzyme activity: significance and application in larval fish research. In: B.T. Walther and H.J. Fhyn (Eds.), Physiological and biochemical aspects of fish development, University of Bergen, Norway: 233–239.
  • Ueberschär, B. 1995. The use of tryptic enzyme activity measurement as a nutritional condition index: laboratory calibration data and field application. ICES Marine Science Symposium, 201: 119–129.
  • Zambonino Infante, J.L. and Cahu, C.L. 1994. Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiology Biochemistry, 12: 399–408.
  • Zambonino Infante, J.L. and Cahu. C.L. 2001. Ontogeny of the gastrointestinal tract of marine fish larvae. Comparative Biochemistry and Physiology, 130: 477– 487.
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon