Effects of Waterborne ZnO Nanoparticles and $Zn^{2+}$ Ions on the Gills of Rainbow Trout (Oncorhynchus mykiss): Bioaccumulation, Histopathological and Ultrastructural Changes

The aim of this study was comparing the toxic effects of zinc oxide nanoparticles (ZnO NPs) versus zinc ions ($Zn^{2+}$) at ahigh non-lethal (500µg/L) and a low environmental relevant (0.05µg/L) concentrations on gills of rainbow trout(Oncorhynchus mykiss) following 14 days of waterborne exposure. Structural alterations, histopathological anomalies, andzinc bioaccumulation were investigated in the gills using field emission scanning electron microscopy (FESEM), hematoxylinand eosin staining (H&E), and graphite furnace atomic absorption spectrophotometry (GFAAS) respectively. Some damagessuch as shortening and fusion of secondary lamellae, surface epithelium hypertrophy, and hyperplasia of the primary lamellaewere observed in the gill tissue. Histopathological alterations of gills were minimum in bot h none exposed (control) fish andfish exposed to 0.05µg/L $Zn^{2+}$. The severity of gill damages were higher in fish exposed to 500µg/L ZnO NPs compared to500µg/L $Zn^{2+}$ and 0.05µg/L ZnO NPs. The Zn accumulation in the gills was concentration-dependent such thatbioaccumulation order was as 500µg/L Zn2+> 500µg/L ZnO NPs ≈ 0.05µg/L $Zn^{2+}$> 0.05µg/L ZnO NPs> control. In summary,the results of present study showed that although the accumulation capability of $Zn^{2+}$ was higher than ZnO NPs, but NPscause more structural damages to gills compare to ions.

___

Adam, N., Vergauwen, L., Blust, R., & Knapen, D. (2015). Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles. Environmental Research, 138: 82-92. https://doi.org/10.1016/j.envres.2015.02.014.

Cong, Y., Jin, F., Wang, J., & Mu, J. (2017). The embryo toxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma. Aquatic Toxicology; 185: 11-18. https://doi.org/10.1016/j.aquatox.2017.01.006.

Connolly, M., Fernández, M., Conde, E., Torrent, F., Navas, J.M., & Fernández-Cruz, M.L. (2016). Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Science of the Total Environment, 551- 552: 334-343. https://doi.org/10.1016/j.scitotenv.2016.01.186.

De Jong, W.H., Hagens, W.I., Krystek, P., Burger, M.C., Sips, A.J.A.M., & Geertsma, R.E. (2008). Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 29: 1912–1919. https://doi.org/10.1016/j.biomaterials.2007.12.037.

Falfushynska, H., Gnatyshyna, L., Fedoruk, O., Mitina, N., Zaichenko, A., Stoliar, O., & Stoika, R. (2015). Hepatic metallothioneins in molecular responses to cobalt, zinc, and their nanoscale polymeric composites in frog Rana ridibunda. Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology, 172-173: 45-56. https://doi.org/10.1016/j.cbpc.2015.04.006.

Fan, W., Li, Q., Yang, X., & Zhang, L. (2013). Zn subcellular distribution in liver of goldfish (Carassius auratus) with exposure to zinc oxide nanoparticles and mechanism of hepatic detoxification. PLoS One, 8(11): 78123-78129. https://doi.org/10.1371/journal.pone.0078123.

Franklin, N.M., Rogers, N.J., Apte, S.C., Batley, G.E., Gadd, G.E., & Casey, P.S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental Science & Technology, 41(24): 8484- 8490. http://dx.doi.org/10.1021/es071445r.

Griffitt, R.J., Hyndman, K., Denslow, N.D., & Barber, D.S. (2009). Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicological Sciences, 107(2): 404- 415. https://doi.org/10.1093/toxsci/kfn256.

Handy, R.D., Henry, T.B., Scown, T.M., Johnston, B.D., & Tyler, C.R. (2008). Manufactured nanoparticles: their uptake and effects on fish: a mechanistic analysis. Ecotoxicology 17: 396-409. doi: 10.1007/s10646-008- 0205-1

Hao, L., & Chen, L. (2012). Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and Environmental Safety, 80: 103-110. https://doi.org/10.1016/j.ecoenv.2012.02.017

Hao, L., Chen, L., Hao, J., & Zhong, N. (2013). Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicology and Environmental Safety 91: 52-60. https://doi.org/10.1016/j.ecoenv.2013.01.007.

Johari, S.A., Kalbassi, M.R., Yu, I.J., & Lee, J.H. (2015). Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. Comparative Clinical Pathology, 24: 995-1007. https://doi.org/10.1007/s00580-014-2019-2.

Johnston, B.D., Scown, T.M., Moger, J., Cumberland, S.A., Baalousha, M., Linge, K., van Aerle, R., Jarvis, K., Lead, J.R., & Tyler, C.R. (2010). Bioavailability of Nanoscale Metal Oxides TiO2, CeO2, and ZnO to Fish. Environmental Science & Technology, 44: 1144- 1151. DOI: 10.1021/es901971a.

Kaya, H., Aydın, F., Gürkanc, M., Yılmaz, S., Ates, M., Demir, V., & Arslan, Z. (2015). Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). Environmental Toxicology and Pharmacology, 40(3): 936-947. https://doi.org/10.1016/j.etap.2015.10.001.

Keller, A.A., McFerran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15:1692. https://doi.org/10.1007/s11051-013-1692-4.

Khan, F.R., & McGee, J.C. (2013). Zn-stimulated mucus secretion in the rainbow trout (Oncorhynchus mykiss) intestine inhibits Cd accumulation and Cd-induced lipid peroxidation. Aquatic Toxicology, 142-143: 17- 25. https://doi.org/10.1016/j.aquatox.2013.07.015

Luo, Z., Qiu, Z., Chen, Z., Du Laing, G., Liu, A., & Yan, C. (2015). Impact of TiO2 and ZnO nanoparticles at predicted environmentally relevant concentrations on ammonia-oxidizing bacteria cultures under ammonia oxidation. Environmental Science and Pollution Research, 22(4): 2891-2899. https://doi.org/10.1007/s11356-014-3545-9.

Mansouri, B., Maleki, A., Johari, S.A., & Reshahmanish, N. (2015). Effects of cobalt oxide nanoparticles and cobalt ions on gill histopathology of zebra fish (Danio rerio). AACL Bioflux, 8(3):438-444.

Nanotechnology Products Database (2017). http://product.statnano.com/ last accessed at 09/09/2017.

OECD. (1984). OECD guidelines for the testing of chemicals. Test no. 204: fish, prolonged toxicity test: 14-day study. Organization for Economic Cooperation and Development, Paris.

Rajkumar, K.S., Kanipandian, N., & Thirumurugan, R. (2012). Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appllied Nanosciences, https://doi.org/10.1007/s13204-015-0417-7

RNCOS. (2015). Nanotechnology Market Outlook 2020, April 2015, 160 pages.

Sirelkhatim, A., Mahmud, S., Seeni, A., Mohamad Kaus, N.H., Ann, L.C., Mohd Bakhori, S.K., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7: 219–242. https://doi.org/10.1007%2Fs40820-015-0040-x

Spry, D.J., & Wood, C.M. (1988). Zinc influx across the isolated, perfused head preparation of the rainbow trout (Salmo gairdneri) in hard and soft water. Canadian Journal of Fisheries and Aquatic Sciences, 45: 2206-2215. https://doi.org/10.1139/f94-247.

Subashkumar, S., & Selvanayagam, M. (2014). First report on: Acute toxicity and gill histopathology of fresh water fish Cyprinus carpio exposed to Zinc oxide (ZnO) nanoparticles. International Journal of Scientific and Research Publications, 4(3): 1-4.

Welsh, P.G., Lipton, J., Mebane, C.A., & Marr, J.C.A. (2008). Influence of flow-through and renewal exposures on the toxicity of copper to rainbow trout. Ecotoxicology and Environmental Safety, 69: 199- 208. https://doi.org/10.1016/j.ecoenv.2007.04.003.

Woodrow Wilson Database. (2013) Nanotechnology consumer product inventory. http://www.nanotechproject.org/cpi/about/analysis/ last accessed at 03/03/2017.

Wu, Q., Nouara, A., Li, Y., Zhang, M., Wang, W., Tang, M., Ye, B., Ding, J., & Wang, D. (2013). Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere, 90(3): 1123- 1131. https://doi.org/10.1016/j.chemosphere.2012.09.019.

Yao, D., Chen, Z., Zhao, K., Yang, Q., & Zhang, W. (2013). Limitation and challenge faced to the researches on environmental risk of nanotechnology. Procedia Environmental Sciences, 18: 149-156. https://doi.org/10.1016/j.proenv.2013.04.020.

Zhao, X., Ren, X., Zhu, R., Luo, Z., & Ren, B. (2016). Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquatic Toxicology, 180: 56-70. https://doi.org/10.1016/j.aquatox.2016.09.013
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Effects of Waterborne ZnO Nanoparticles and $Zn^{2+}$ Ions on the Gills of Rainbow Trout (Oncorhynchus mykiss): Bioaccumulation, Histopathological and Ultrastructural Changes

Borhan MANSOURI, Seyed Ali JOHARI, Nammam Ali AZADI, Mehrdad SARKHEIL

Impact of Fed Containing Different Levels of Diets Supplementation Spirulina platensis on Growth, Haematological, Body Composition and Biochemical Parameters, of Gurami (Osphronemus gouramy)

Sorta Basar Ida SIMANJUNTAK, Indarmawan INDARMAWAN, Eko Setio WIBOWO

Effects of Supplementing Low-Molecular-Weight Fish Hydrolysate in High Soybean Meal Diets on Growth, Antioxidant Activity and Non-Specific Immune Response of Pacific White Shrimp (Litopenaeus vannamei)

Xiaoli LI, Ling WANG, Chunxiao ZHANG, Samad RAHIMNEJAD, Kai SONG, Xiangli YUAN

Distribution and Relationships of Eleven Trace Elements in Muscle of Six Fish Species from Skadar Lake (Montenegro)

Jelena RAKOCEVIC, Danijela SUKOVIC, Drago MARIC

Piper betle Leaf Extract Inhibits Multiple Aquatic Bacterial Pathogens and In Vivo Streptococcus agalactiae Infection in Nile Tilapia

Gabriel Arome ATAGUBA, Ha Thanh DONG, Triwit RATTANAROJPONG, Saengchan SENAPIN, Krishna Rugmini SALIN

Structural Indicators of Zooplankton in the Shardara Reservoir (Kazakhstan) and the Main Influencing Factors

Elena KRUPA, Sophia BARINOVA, Saule ASSYLBEKOVA, Kuanysh ISBEKOV

Low Temperature Effect on Multiple Alizarin Immersion Mass-Marking of Juvenile Sea Trout Salmo trutta m. trutta L. otoliths

Adam M. LEJK, Andrzej MARTYNIAK

Spatial Analysis of Effective Coastal Land Use Policies for the Development of Amateur Marine in Turkey

İsmail ÖNDEN, Metin ÇANCI

A Report on Ecotypes of Setipinna phasa (Hamilton-Buchanan, 1822) from Indian Waters

Shardul S. GANGAN, A. PAVAN KUMAR, Dhaval BAMANIYA, S. JAHAGEERDAR, W. S. LAKRA, A. K. JAISWAR

Numerical Study on the Flow Field Around a Fish Farm in Tidal Current

Chun Wei BI, Tiao Jian XU