Effects of Supplementing Low-Molecular-Weight Fish Hydrolysate in High Soybean Meal Diets on Growth, Antioxidant Activity and Non-Specific Immune Response of Pacific White Shrimp (Litopenaeus vannamei)

Supplemental effects of low-molecular-weight fish hydrolysate (LWFH) was investigated in high soybean meal (HSM)diets fed to Litopenaeus vannamei (0.44 ± 0.03 g) for 48 days. The HSM diet, containing 15% fish meal and 47% soybeanmeal, was supplemented with 0, 5, 10, 15 or 20 g $kg^{-1}$ LWFH (HSM0, HSM5, HSM10, HSM15 and HSM20). LWFHsignificantly (P < 0.05) improved growth and the highest growth was found in HSM15. Feed intake significantly increased at≥ 10 g $kg^{-1}$ LWFH, and the lowest feed conversion ratio was observed in HSM10 group. Shrimp survival significantlyincreased at ≥ 15 g $kg^{-1}$ LWFH compared to HSM0 group. Significantly higher serum peroxidase, acid phosphatase andalkaline phosphatase activities were observed in HSM20 group and total antioxidant capacity increased at ≥ 15 g $kg^{-1}$ LWFH.HSM10 group exhibited significantly higher phenoloxidase activity than HSM0, and superoxide dismutase activity enhancedin HSM5 and HSM10. Intestinal inflammatory genes expression assay showed the significant decrease of activatingtranscription factor 4 expression in HSM15 group compared to HSM0 group, and macrophage migration inhibitory factorexpression decreased significantly at 5-15 g kg-1 LWFH. To conclude, 10-15 g kg-1 LWFH in HSM diet improves growth,antioxidant activity and innate immunity.

___

Amaya, E.A., Davis, D.A., & Rouse, D.B. (2007). Replacement of fish meal in practical diets for the pacific white shrimp (Litopenaeus vannamei) reared under pond conditions, Aquaculture, 262(2-4), 393- 401. https://doi.org/10.1016/j.aquaculture.2006.11.015

Aksnes, A., Hope, B., Jonsson, E., Bjornsson, B.T., & Albrektsen, S. (2006a). Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. I: growth, growth regulation and feed utilization. Aquaculture, 261(1), 305-317. https://doi.org/10.1016/j.aquaculture.2006.07.025

Aksnes, A., Hope, B., Hostmark, O., & Albrektsen, S. (2006b). Inclusion of size fractionated fish hydrolysate in high plant protein diets for Atlantic cod (Gadus morhua). Aquaculture, 261(3), 1102-1110. https://doi.org/10.1016/j.aquaculture.2006.07.038

Aragao, C., Lec, C., Martins, D., Ronnestad, I., Gomes, E., & Dinis, M. T. (2004). A balanced dietary amino acid profile improves amino acid retention in post-larval Senegalese sole (Solea senegalensis). Aquaculture, 233(1-4), 293-304. https://doi.org/10.1016/j.aquaculture.2003.08.007

Bakke-Mckellep, A. M., Penn, M. H., Salas, P. M., Refstie, S., Sperstad, S., Landsverk, T., Ringø, E., & Krogdahl, A. (2007). Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost atlantic salmon (Salmo salar L.). British Journal of Nutrition, 97(4), 699-713. https://doi.org/10.1017/S0007114507381397

Baugh, J.A., & Richard, B. (2002). Macrophage migration inhibitory factor. Critical Care Medicine, 30(1), 27- 35. https://doi.org/10.1073/pnas.012511599

Berge, G.M., & Storebakken, T. (1996). Fish protein hydrolyzate in starter diets for Atlantic salmon (Salmo salar) fry. Aquaculture, 145(1-4), 205-212. https://doi.org/10.1016/S0044-8486(96)01355-5

Bøgwald, J., Dalmo, R., Leifson, R.M., Stenberg, E., & Gildberg, A. (1996). The stimulatory effect of a muscle protein hydrolysate from Atlantic cod (Gadus morhua L.) on Atlantic salmon (Salmo salar L.) head kidney leucocytes. Fish & Shellfish Immunology, 6(1), 3-16. https://doi.org/10.1006/fsim.1996.0002

Bucci, C., & Chiariello, M. (2006). Signal transduction grabs attention. Cellular Signalling, 18(1), 1-8. https://doi.org/10.1016/j.cellsig.2005.07.001

Bui, H.T.D., Khosravi, S., Fournier, V., Herault, M., & Lee, K.J. (2014). Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture, s418-419(1), 11-16. https://doi.org/10.1016/j.aquaculture.2013.09.046

Bulbul, M., Kader, M.A., Asaduzzaman, M., Ambak, M.A., Chowdhury, A.J.K., Hossain, M.S., Ishikawa, M., & Koshio, S. (2015a). Can canola meal and soybean meal be used as major dietary protein sources for kuruma shrimp (Marsupenaeus japonicus)? Aquaculture, 452, 194-199. https://doi.org/10.1016/j.aquaculture.2015.10.036

Bulbul, M., Koshio, S., Ishikawa, M., Yokoyama, S., & Kader, M.A. (2015b). Growth performance of juvenile kuruma shrimp Marsupenaeus japonicus (bate) fed diets replacing fishmeal with soybean meal. Aquaculture Research, 46(3), 572-580. https://doi.org/10.1111/are.12201

Bushell, K.N., Leeman, S.E., Gillespie, E., Gower, A.C., Reed, K.L., Stucchi, A.F., Becker, M.B., & Amar, S. (2011). LITAF Mediation of Increased TNF-α Secretion from Inflamed Colonic Lamina Propria Macrophages. Plos One, 6(9), e25849. http://dx.doi.org/10.1371%2Fjournal.pone.0025849

Buttle, L. G., Burrells, A. C., Good, J. E., Williams, P. D., Southgate, P. J., & Burrells, C. (2001). The binding of soybean agglutinin (SBA) to the intestinal epithelium of Atlantic salmon, Salmo salar, and rainbow trout, Oncorhynchus mykiss, fed high levels of soybean meal. Veterinary Immunology & Immunopathology, 80(3-4), 237-244. https://doi.org/10.1016/S0165-2427(01)00269-0

Byun, H.G., Lee, J.K., Park, H.G., Jeon, J.K., & Kim, S.K. (2009). Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis. Process Biochemistry, 44(8), 842-846. https://doi.org/10.1016/j.procbio.2009.04.003

Cai, Z.N., Li, W.J., Mai, K.S., Xu, W., Zhang,Y.J., & Ai,Q.H. (2015). Effects of dietary size-fractionated fish hydrolysates on growth, activities of digestive enzymes and aminotransferases and expression of some protein metabolism related genes in large yellow croaker (Larimichthys crocea) larvae. Aquaculture, 440, 40-47. https://doi.org/10.1016/j.aquaculture.2015.01.026

Cahu, C.L., Infante, J.L.Z., Quazuguel, P., & Gall, M.M.L. (1999). Protein hydrolysate vs. fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax, larvae. Aquaculture, 171(1-2), 109-119. https://doi.org/10.1016/S0044-8486(98)00428-1

Calandra, T., & Roger, T. (2003). Macrophage migration inhibitory factor: a regulator of innate immunity. Nature Reviews Immunology, 3(10), 791. https://doi.org/10.1038/nri1200

Carvalho, A.P., Sá, R., Oliva-Teles, A., & Bergot, P. (2004). Solubility and peptide profile affect the utilization of dietary protein by common carp (Cyprinus carpio) during early larval stages. Aquaculture, 234(1), 319-333. https://doi.org/10.1016/j.aquaculture.2004.01.007

Chiu, S.T., Wong, S. L., Shiu, Y.L., Chiu, C.H., Guei, W.C., & Liu, C.H. (2015). Using a fermented mixture of soybean meal and earthworm meal to replace fish meal in the diet of white shrimp, Penaeus vannamei (boone). Aquaculture Research, 47(11), 3489- 3500. https://doi.org/10.1111/are.12799

Chotikachinda, R., Tantikitti, C., Benjakul, S., Rustad, T., & Kumarnsit, E. (2013). Production of protein hydrolysates from skipjack tuna (Katsuwonus pelamis ) viscera as feeding attractants for asian seabass (Lates calcarifer). Aquaculture Nutrition, 19(5), 773– 784. https://doi.org/10.1111/anu.12024

Dorr, A. J. M., Pacini, N., Abete, M. C., Prearo, M., & Elia, A. C. (2008). Effects of a selenium-enriched diet on antioxidant response in adult crayfish (Procambarus clarkii). Chemosphere, 73(7), 1090-1095. https://doi.org/10.1016/j.chemosphere.2008.07.054

Duarte, J., Vinderola, G., Ritz, B., Perdigón, G., & Matar, C. (2006). Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation. Immunobiology, 211(5), 341-350. https://doi.org/10.1016/j.imbio.2005.12.002

Espe, M., Hevrøy, E. M., Liaset, B., Lemme, A., & ElMowafi, A. (2008). Methionine intake affect hepatic sulphur metabolism in Atlantic salmon Salmo salar. Aquaculture, 274(1), 132-141. https://doi.org/10.1016/j.aquaculture.2007.10.051

Espe, M., & Lied, E. (1999). Fish silage prepared from different cooked and uncooked raw materials: chemical changes during storage at different temperatures. Journal of the Science of Food & Agriculture,79(2), 327-332. https://doi.org/10.1002/(SICI)1097- 0010(199902)79:2<327::AID-JSFA207>3.0.CO;2-T

Gatlin III, D.M., Barrows, E.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Herman, E., Hu, G., Krogdahl, A., Nelson, R., Overturf, K., Rust, M., Sealey, W., Skonberg, D., & Souza, E.J. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, 38(6), 551–579. https://doi.org/10.1111/j.1365- 2109.2007.01704.x

Gao, Y., He, Z., Vector, H., Zhao, B., Li, Z., He, J., Lee, J.Y., & Chu, Z. (2017). Effect of stocking density on growth, oxidative stress and hsp 70 of Pacific white shrimp Litopenaeus vannamei. Turkish Journal of Fisheries and Aquatic Sciences, 17, 877-884. DOI: 10.4194/1303-2712-v17_5_04.

Gao, W., Tian, L., Huang, T., Yao, M., Xu, Q., & Guo, T. L. (2016). Molecular cloning and expression of the calreticulin gene of the pacific white shrimp, litopenaeus vannamei, in response to acute hypoosmotic stress. Aquaculture, 454, 265-271. https://doi.org/10.1016/j.aquaculture.2016.01.005

Gildberg, A., Johansen, A., & Bøgwald, J. (1995). Growth and survival of Atlantic salmon (Salmo salar) fry given diets supplemented with fish protein hydrolysate and lactic acid bacteria during a challenge trial with Aeromonas salmonicida. Aquaculture, 138(s1-4), 23-34. https://doi.org/10.1016/0044-8486(95)01144-7

Grey, M., Forster, I., Dominy, W., Ako, H., & Giesen, A.F. (2009). Validation of a feeding stimulant bioassay using fish hydrolysates for the pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 40(4), 547–555. https://doi.org/10.1111/j.1749-7345.2009.00264.x

Hernandez, C., Sarmiento-Pardo, J., & Abdo, P.D.L.I. (2004). Replacement of fish meal with co-extruded wet tuna viscera and corn meal in diets for white shrimp Litopenaeus vannamei boone. Aquaculture Research, 35(12), 1153-1157. https://doi.org/10.1111/j.1365-2109.2004.01139.x

Hevrøy, E.M., El-Mowafi, A., Taylor, R.G., Olsvik, P.A., Norberg, B., & Espe, M. (2007). Lysine intake affects gene expression of anabolic hormones in Atlantic salmon, Salmo salar. General & Comparative Endocrinology, 152(1), 39-46. https://doi.org/10.1016/j.ygcen.2007.02.015

Ho, T.C.W., Li-Chan, E.C.Y., Skura, B.J., Higgs, D.A., & Dosanjh, B. (2014). Pacific hake (Merluccius productus, ayres, 1855) hydrolysates as feed attractants for juvenile chinook salmon (Oncorhynchus tshawytscha, walbaum, 1792). Aquaculture Research, 45(7), 1140- 1152. https://doi.org/10.1111/are.12056

Huang, F., Wang, L., Zhang, C.X., & Song, K. (2017). Replacement of fishmeal with soybean meal and mineral supplements in diets of Litopenaeus vannamei, reared in low-salinity water. Aquaculture, 473, 172-180. https://doi.org/10.1016/j.aquaculture.2017.02.011

Inada, M., Yui, T., Kono, T., Yoshida, T., Sakai, M., & Itami, T. (2013). Novel cytokine genes from kuruma shrimp Marsupenaeus japonicus: MIF and VEGF are important in the innate immunity. Fish & Shellfish Immunology, 34(6), 1656-1657. https://doi.org/10.1016/j.fsi.2013.03.070

Iwanaga, S., & Lee, B.L. (2005). Recent advances in the innate immunity of invertebrate animals. Journal of Biochemistry & Molecular Biology, 38(2), 128-50. https://doi.org/10.5483/BMBRep.2005.38.2.128

Jin, P., Hu, J., Qian, J.J., Chen, L.M., Xu, X.F., & Ma, F. (2012). Identification and characterization of a putative lipopolysaccharide-induced TNF-α factor (LITAF) gene from Amphioxus (Branchiostoma belcheri): An insight into the innate immunity of Amphioxus and the evolution of LITAF. Fish & Shellfish Immunology, 32(6), 1223-1228. https://doi.org/10.1016/j.fsi.2012.03.030

Kader, M.A., & Koshio, S. (2012). Effect of composite mixture of seafood by-products and soybean proteins in replacement of fishmeal on the performance of red sea bream, Pagrus major. Aquaculture, 368–369(6), 95-102. https://doi.org/10.1016/j.aquaculture.2012.09.014

Kader, M.A., Bulbul, M., Koshio, S., Ishikawa, M., Yokoyama, S., Nguyen, B. T., & Komilus, C. F. (2012a). Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture, 350-353(2), 109-116. https://doi.org/10.1016/j.aquaculture.2012.04.009

Kader, M. A., Koshio, S., Ishikawa, M., Yokoyama, S., Bulbul, M., Nguyen, B. T., Gao, J., & Laining, A. (2012b). Can fermented soybean meal and squid by - product blend be used as fishmeal replacements for Japanese flounder (Paralichthys olivaceus)? Aquaculture Research, 43(10), 1427- 1438. https://doi.org/10.1111/j.1365- 2109.2011.02945.x

Hoebe, K., Janssen, E., & Beutler, B. (2004). The interface between innate and adaptive immunity. Nature Immunology, 5(10), 971-974. https://doi.org/10.1038/ni1004-971

Khosravi, S., Rahimnejad, S., Herault, M., Fournier, V., Lee, C.R., Bui, H.T.D., & Lee, K.J. (2015). Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major. Fish & Shellfish Immunology, 45(2), 858-868. https://doi.org/10.1016/j.fsi.2015.05.039

Kim, S.K., & Wijesekara, I. (2010). Development and biological activities of marine-derived bioactive peptides: a review. Journal of Functional Foods, 2(1), 1-9. https://doi.org/10.1016/j.jff.2010.01.003

Knudsen, D., Jutfelt, F. H., Sundell, K., Koppe, W., & Frokiaer, H. (2008). Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 100(1), 120- 129. https://doi.org/10.1017/S0007114507886338

Kotzamanis, Y.P., Gisbert, E., Gatesoupe, F.J., Infante, J.Z., & Cahu, C. (2007). Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to vibrio anguillarum, in european sea bass (Dicentrarchus labrax) larvae. Comparative Biochemistry & Physiology Part A Molecular & Integrative Physiology, 147(1), 205-214. https://doi.org/10.1016/j.cbpa.2006.12.037

Liang, M.Q., Wang, J.L., Chang, Q., & Mai, K.S. (2005). Effects of different levels of fish protein hydrolysate in the diet on the nonspecific immunity of Japanese sea bass, Lateolabrax japonicus, (Cuvieret valenciennes, 1828). Aquaculture Research, 37(1), 102–106. https://doi.org/10.1111/j.1365- 2109.2005.01392.x

Lim, C., & Dominy, W. (1990). Evaluation of soybean meal as a replacement for marine animal protein in diets for shrimp (Penaeus vannamei). Aquaculture, 87(1), 53- 63. https://doi.org/10.1016/0044-8486(90)90210-E

Luna-Vital, D.A., Mojica, L., Mejía, E.G.D., Mendoza, S., & Loarca-Piña., G. (2015). Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): a review. Food Research International, 76, 39-50. https://doi.org/10.1016/j.foodres.2014.11.024

Martínez-Alvarez, O., Chamorro, S., & Brenes, A. (2015). Protein hydrolysates from animal processing byproducts as a source of bioactive molecules with interest in animal feeding: A review. Food Research International, 73, 204-212. https://doi.org/10.1016/j.foodres.2015.04.005

Nazeer, R.A., Kumar, N.S.S., & Ganesh, R.J. (2012). In vitro, and in vivo, studies on the antioxidant activity of fish peptide isolated from the croaker (Otolithes ruber) muscle protein hydrolysate. Peptides, 35(2), 261-268. https://doi.org/10.1016/j.peptides.2012.03.028

Niu J., Zhang Y.Q., Liu Y.J., Tian L.X., Lin H.Z., Chen X., Yang H.J., & Liang G.Y. (2014). Effects of graded replacement of fish meal by fish protein hydrolysate on growth performance of early post-larval Pacific white shrimp (Litopenaeus vannamei, Boone). Journal of Applied Animal Research, 42(1), 6-15. http://dx.doi.org/10.1080/09712119.2013.795897

Paripatananont, T., Boonyaratpalin, M., Pengseng, P., & Chotipuntu, P. (2001). Substitution of soy protein concentrate for fishmeal in diets of tiger shrimp Penaeus monodon. Aquaculture Research, 32(s1), 369-374. http://dx.doi.org/10.1046/j.1355- 557x.2001.00045.x

Rahman, S.H.A., Razek, F.A.A., Goda A.S., Ghobashy, A.F.A., Taha, S.M., & Khafagy, A.R. (2010). Partial substitution of dietary fish meal with soybean meal for speckled shrimp, Metapenaeus monoceros (Fabricius, 1798) (Decapoda: Penaeidae) juvenile. Aquaculture Research, 41(9), e299-e306. http://dx.doi.org/10.1111/j.1365-2109.2010.02530.x

Regalado, C., & García-Almendárez, B.E. (2004). Biotechnological applications of peroxidases. Phytochemistry Reviews, 3(1), 243-256. http://dx.doi.org/10.1023/B:PHYT.0000047797.81958 .69

Soderhall, K., & Cerenius, L. (1998). Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology, 10(1), 23- 28. https://doi.org/10.1016/S0952-7915(98)80026-5

Tan, S. H., Dian-Yi, H. E., Yan, F., & Liang, F. (2005). Effects of nano-2 on malondialdehyde content and total antioxidative capacity in the liver of Carassius auratus. Journal of Agro-environmental Science, 24(1), 21-24. http://en.cnki.com.cn/Article_en/CJFDTotalNHBH2005S1005.htm

Tang, H.G., Wu, T.X., Zhao, Z.Y., & Pan, X.D. (2008). Effects of fish protein hydrolysate on growth performance and humoral immune response in large yellow croaker (Pseudosciaena crocea R.). Journal of Zhejiang University science B, 9(9), 684-690. https://doi.org/10.1631/jzus.B0820088

Xie, S.W., Liu, Y.J., Zeng, S., Niu, J., & Tian, L.X. (2016). Partial replacement of fish-meal by soy protein concentrate and soybean meal based protein blend for juvenile pacific white shrimp, Litopenaeus vannamei. Aquaculture, 464, 296-302. https://doi.org/10.1016/j.aquaculture.2016.07.002

Yin, Z.S., Shen, L.J., Hu, W.J., & Wu, Y. (2012). The reasearch progress of macrophage migration inhibitory factor (MIF). Chinese Journal of Cellular and Molecular Immunology, 28(5), 549-550. https://doi.org/10.13423/j.cnki.cjcmi.006420

Yue, L.L., Shao, P.W., Zong, Z.J., Zhao, Y.Z., Chen, X.H., Zheng, X.B., & Chen, X.L. (2012a). Cloning and Expression of Rab6A Gene From Litopenaeus vannamei. Progress in Veterinary Medicine, 33(8), 22-26. http://en.cnki.com.cn/Article_en/CJFDTotalDYJZ201208006.htm

Yue, Y.R., Liu, Y.J., Tian, L.X., Gan, L., Yang, H.J., & Liang, G.Y. (2012b). Effects of replacing fish meal with soybean meal and peanut meal on growth, feed utilization and haemolymph indexes for juvenile white shrimp Litopenaeus vannamei, Boone. Aquaculture Research, 43(43), 1687-1696. https://doi.org/10.1111/j.1365-2109.2011.02976.x

Zheng, K.K., Liang, M.Q., Yao, H.B., Wang, J.L., & Chang, Q. (2012). Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus). Aquaculture Nutrition,18(3), 297–303. https://doi.org/10.1111/j.1365-2095.2011.00896.x

Zheng, K., Liang, M.Q., Yao, H.B., Wang, J.L., & Chang, Q. (2013). Effect of size-fractionated fish protein hydrolysate on growth and feed utilization of turbot (Scophthalmus maximus L.). Aquaculture Research, 44(6), 895–902. https://doi.org/10.1111/j.1365-2109.2012.03094.x

Zhu, H.W., Xia, L.M., Zhang, Y.G., Wang, H.H., Xu, W.J., Hu, H., Wang, J., Xin, J., Gang, Y., Sha, S.M., Xu, B., Fan, D.M., Nie, Y.Z., & Wu, K.C. (2012). Activating transcription factor 4 confers a multidrug resistance phenotype to gastric cancer cells through transactivation of SIRT1 expression. Plos One, 7(2), 786-786. http://dx.doi.org/10.1371%2Fjournal.pone.0031431
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

A Report on Ecotypes of Setipinna phasa (Hamilton-Buchanan, 1822) from Indian Waters

Shardul S. GANGAN, A. PAVAN KUMAR, Dhaval BAMANIYA, S. JAHAGEERDAR, W. S. LAKRA, A. K. JAISWAR

Effects of Supplementing Low-Molecular-Weight Fish Hydrolysate in High Soybean Meal Diets on Growth, Antioxidant Activity and Non-Specific Immune Response of Pacific White Shrimp (Litopenaeus vannamei)

Xiaoli LI, Ling WANG, Chunxiao ZHANG, Samad RAHIMNEJAD, Kai SONG, Xiangli YUAN

Numerical Study on the Flow Field Around a Fish Farm in Tidal Current

Chun Wei BI, Tiao Jian XU

Distribution and Relationships of Eleven Trace Elements in Muscle of Six Fish Species from Skadar Lake (Montenegro)

Jelena RAKOCEVIC, Danijela SUKOVIC, Drago MARIC

Impact of Fed Containing Different Levels of Diets Supplementation Spirulina platensis on Growth, Haematological, Body Composition and Biochemical Parameters, of Gurami (Osphronemus gouramy)

Sorta Basar Ida SIMANJUNTAK, Indarmawan INDARMAWAN, Eko Setio WIBOWO

Effects of Waterborne ZnO Nanoparticles and $Zn^{2+}$ Ions on the Gills of Rainbow Trout (Oncorhynchus mykiss): Bioaccumulation, Histopathological and Ultrastructural Changes

Borhan MANSOURI, Seyed Ali JOHARI, Nammam Ali AZADI, Mehrdad SARKHEIL

Structural Indicators of Zooplankton in the Shardara Reservoir (Kazakhstan) and the Main Influencing Factors

Elena KRUPA, Sophia BARINOVA, Saule ASSYLBEKOVA, Kuanysh ISBEKOV

Piper betle Leaf Extract Inhibits Multiple Aquatic Bacterial Pathogens and In Vivo Streptococcus agalactiae Infection in Nile Tilapia

Gabriel Arome ATAGUBA, Ha Thanh DONG, Triwit RATTANAROJPONG, Saengchan SENAPIN, Krishna Rugmini SALIN

Low Temperature Effect on Multiple Alizarin Immersion Mass-Marking of Juvenile Sea Trout Salmo trutta m. trutta L. otoliths

Adam M. LEJK, Andrzej MARTYNIAK

Spatial Analysis of Effective Coastal Land Use Policies for the Development of Amateur Marine in Turkey

İsmail ÖNDEN, Metin ÇANCI