Wireless sensing – enabler of future wireless technologies

Wireless sensing – enabler of future wireless technologies

With the completion of the 5G standardization efforts, the wireless communication world has now turned to the road ahead, the future wireless communication visions. One common vision is that future networks will be flexible, or able to accommodate an even richer variety of services with stringent, often conflicting requirements. This ambitious feat can only be accomplished with a ubiquitous awareness of the radio and physical environment. To this end, this paper highlights the importance of wireless sensing as a means for radio environment awareness and surveys wireless sensing methods under different domains. Then, a review of wireless sensing from a standardization perspective is given. These standardization efforts will provide the initial landscape upon which research into future wireless sensing methods will be built upon. Therefore, the paper is concluded by outlining imperative standardization requirements and future directions in wireless sensing

___

  • 1] Katz M, Matinmikko-Blue M, Latva-Aho M. 6Genesis flagship program: building the bridges towards 6G-enabled wireless smart society and ecosystem. In: IEEE 10th Latin-American Conference on Communications (LATIN- COM); Guadalajara, Mexico; 2018. pp. 1-9.
  • [2] Ziegler V, Yrjola S. 6G indicators of value and performance. In: 2nd IEEE 6G Wireless Summit (6G SUMMIT); Virtual Conference; 2020. pp. 1-5. [3] Saad W, Bennis M, Chen M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network 2020; 34 (3): 134-142. doi: 10.1109/MNET.001.1900287
  • [4] Yazar A, Tusha SD, Arslan H. 6G vision: an ultra-flexible perspective. ITU Journal of Future and Evolving Technologies 2020; 1 (1): 121-140.
  • [5] Laselva D, Lopez-Perez D, Rinne M, Henttonen T. 3GPP LTE-WLAN aggregation technologies: func- tionalities and performance comparison. IEEE Communications Magazine 2018; 56 (3): 195-203. doi: 10.1109/MCOM.2018.1700449
  • [6] Mitola J, Maguire GQ. Cognitive radio: making software radios more personal. IEEE Personal Communications 1999; 6 (4): 13-18. doi: 10.1109/98.788210
  • [7] Kishk M, Bader A, Alouini MS. Aerial base station deployment in 6G cellular networks using tethered drones: the mobility and endurance tradeoff. IEEE Vehicular Technology Magazine 2020; 15 (4): 103-111. doi: 10.1109/MVT.2020.3017885
  • [8] Wilhelmi F, Barrachina-Munoz S, Bellalta B, Cano C, Jonsson A et al. A flexible machine-learning-aware architec- ture for future WLANs. IEEE Communications Magazine 2020; 58 (3): 25-31. doi: 10.1109/MCOM.001.1900637
  • [9] Liu G, Huang Y, Li N, Dong J, Jin J et al. Vision, requirements and network architecture of 6G mobile network beyond 2030. China Communications 2020; 17 (9): 92-104. doi: 10.23919/JCC.2020.09.008
  • [10] Yilmaz HB, Tugcu T, Alagöz F, Bayhan S. Radio environment map as enabler for practical cognitive radio networks. IEEE Communications Magazine 2013; 51 (12): 162-169. doi: 10.1109/MCOM.2013.6685772
  • [11] Zhao Y, Le B, Reed JH. Network support: the radio environment map. In: Fette BA (editor). Cognitive Radio Technology. Burlington, MA, USA : Elsevier, 2006, pp. 337-363.
  • [12] Mercer D, Watkins D. The Wireless Home: Assessing the Scale of the Global Home Wi-Fi Device Market. Buckinghamshire, UK: Strategy Analytics, 2019.
  • [13] Mercer D. Global Connected and IoT Device Forecast Update. Buckinghamshire, UK: Strategy Analytics, 2019.
  • [14] Pesko M, Javornik T, Kosir A, Štular M, Mohorcic M. Radio environment maps: the survey of construction methods. KSII Transactions on Internet and Information Systems 2014; 8 (11): 3789-3809. doi:10.3837/tiis.2014.11.008
  • [15] Tekbiyik K, Akbunar Ö, Ekti AR, Görçin A, Kurt GK. Multi-dimensional wireless signal identification based on support vector machines. IEEE Access 2019; 7: 138890-138903. doi: 10.1109/ACCESS.2019.2942368
  • [16] Guo X, Zhang Z, Chang J. Survey of mobile device authentication methods based on RF fingerprint. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS); Paris, France; 2019. pp. 1-6.
  • [17] Ma Y, Zhou G, Wang S. WiFi sensing with channel state information: a survey. ACM Computing Surveys 2019; 52 (3): 1-36. doi: 10.1145/3310194
  • [18] Zanca G, Zorzi F, Zanella A, Zorzi M. Experimental comparison of RSSI-based localization algorithms for in- door wireless sensor networks. In: ACM Proceedings of the Workshop on Real-world Wireless Sensor Networks (REALWSN); Glasgow, Scotland; 2008. pp. 1-5.
  • [19] Liu H, Gan Y, Yang J, Sidhom S, Wang Y et al. Push the limit of WiFi based localization for smartphones. In: ACM Proceedings of the 18th Annual International Conference on Mobile Computing and Networking (Mobicom ’12); İstanbul, Turkey; 2012. pp. 305-316.
  • [20] Niu R, Vempaty A, Varshney PK. Received-signal-strength-based localization in wireless sensor networks. Proceed- ings of the IEEE 2018; 106 (7): 1166-1182. doi: 10.1109/JPROC.2018.2828858
  • [21] Koike-Akino T, Wang P, Pajovic M, Sun H, Orlik PV. Fingerprinting-based indoor localization with commercial MMWave WiFi: a deep learning approach. IEEE Access 2020; 8: 84879-84892. doi: 10.1109/ACCESS.2020.2991129
  • [22] Gezici S, Tian Z, Giannakis GB, Kobayashi H, Molisch AF et al. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine 2005; 22 (4): 70-84. doi: 10.1109/MSP.2005.1458289
  • [23] Ling K, Dai H, Liu Y, Liu AX, Wang W et al. Ultragesture: fine-grained gesture sensing and recognition. IEEE Transactions on Mobile Computing 2020 (early access). doi: 10.1109/TMC.2020.3037241
  • [24] Khanbashi NA, Alsindi N, Al-Araji S, Ali N, Aweya J. Performance evaluation of CIR based location fingerprinting. In: IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC); Sydney, Australia; 2012. pp. 2466-2471.
  • [25] Yang Z, Zhou Z, Liu Y. From RSSI to CSI: indoor localization via channel response. ACM Computing Surveys 2013; 46 (2): 1-32. doi: 10.1145/2543581.2543592
  • [26] Mahafza BR. Radar Systems Analysis and Design Using MATLAB. 3rd ed. New York, NY, USA: CRC Press, 2013. [27] Yang C, Shao H. WiFi-based indoor positioning. IEEE Communications Magazine 2015; 53 (3): 150-157. doi: 10.1109/MCOM.2015.7060497
  • [28] Wang B, Ge L. Blind identification of OFDM signal in Rayleigh channels. In: IEEE 5th International Conference on Information Communications & Signal Processing; Bangkok, Thailand; 2005. pp. 950-954.
  • [29] Curnew SR, Ilow J. Blind signal separation in MIMO OFDM systems using ICA and fractional sampling. In: International Symposium on Signals, Systems and Electronics; Montreal, QC, Canada; 2007. pp. 67-70.
  • [30] Peng L, Hu A, Zhang J, Jiang Y, Yu J et al. Design of a hybrid RF fingerprint extraction and device classification scheme. IEEE Internet of Things Journal 2018; 6 (1): 349-360. doi: 10.1109/JIOT.2018.2838071
  • [31] Jaradat AM, Memişoğlu E, Arslan H. Blind numerology identification for mixed numerologies. In: IEEE Wireless Communications and Networking Conference (WCNC); Nanjing, China; 2021. pp. 1-6.
  • [32] Tabassum H, Salehi M, Hossain E. Fundamentals of mobility-aware performance characterization of cel- lular networks: A tutorial. IEEE Communications Surveys & Tutorials 2019; 21(3): 2288-2308. doi: 10.1109/COMST.2019.2907195
  • [33] Aygül MA, Nazzal M, Sağlam Mİ, Da Costa DB, Ateş HF et al. Efficient spectrum occupancy prediction ex- ploiting multidimensional correlations through composite 2D-LSTM models. Sensors 2021; 21 (1): 135. doi: 10.3390/s21010135
  • [34] Vo QD, De P. A survey of fingerprint-based outdoor localization. IEEE Communications Surveys & Tutorials 2016; 18 (1): 491-506. doi:10.1109/COMST.2015.2448632
  • 35] Jiang D, Delgrossi L. IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular Environ- ments. In: IEEE Vehicular Technology Conference; Singapore, Singapore; 2008, pp. 2036-2040.
  • [36] Sun R, Xin Y, Aboul-Magd O, Calcev G, Wang L et al. TGay functional requirements. IEEE 802.11-2015/1074r0, September 2015.
  • [37] Zhu A, Segev J. Proposed 802.11az functional requirements. IEEE 802.11-16/0424r11, September 2017. [38] Han TX, Au E. 802.11bf timeline discussion. IEEE 802.11-20/1746r1, November 2020.
  • [39] WBA Wi-Fi Sensing Group. Wi-Fi Sensing: A New Technology Emerges. The Central, Singapore: Wireless Broadband Alliance, 2019
  • [40] Sharma J. White Paper: The Wi-Fi Evolution. Greensboro, NC, USA: Qorvo Inc., 2020.
  • [41] Sun W, Lee O, Shin Y, Kim S, Yang C et al. Wi-Fi could be much more. IEEE Communications Magazine 2014; 52 (11): 22-29. doi: 10.1109/MCOM.2014.6957139.
  • [42] Liu J, Liu H, Chen Y, Wang Y, Wang C. Wireless sensing for human activity: a survey. IEEE Communications Surveys & Tutorials 2020; 22 (3): 1629-1645. doi: 10.1109/COMST.2019.2934489.
  • [43] Allegue M, Ghourchian N, Hymavathi S, Morel F, Minayi A. Wi-Fi sensing: technical feasibility, standardization gaps. IEEE 802.11-19/1850r0, November 2019.
  • [44] Au O, Wang B, Liu KJR, Lai H-Q. Wireless sensing: use cases, feasibility, standardization. IEEE 802.11-19/1745r0, September 2019.
  • [45] Chen C, Da Silva C, Sadeghi B, Cordeiro C. Overview of WLAN sensing protocol. IEEE 802.11-20/1232r0, August 2020.
  • [46] Jang I, Choi J, Kim J, Lim D, Kim S. Discussion on WLAN sensing procedure. IEEE 802.11-20/1804r0, November 2020.
  • [47] Jang I, Choi J, Kim J, Lim D, Kim S. Discussion on WLAN sensing roles. IEEE 802.11-20/1805r1, November 2020.
  • [48] Chen C, Da Silva C, Sadeghi B, Cordeiro C. Wi-Fi sensing definitions. IEEE 802.11-20/1849r1, November 2020.
  • [49] Zhang M, Du R, Peng X, Liu C, Sun Y et al. Discussion of channel model for WLAN sensing. IEEE 802.11-20/0906r0, June 2020.
  • [50] Zhang M, Peng X, Du R, Liu C, Sun Y et al. A brief description of the channel realization generation process. IEEE 802.11-20/1334r0, August 2020.
  • [51] Sun Y, Pin DKT, Du R, Liu C, Zhang M et al. Usage model terminology for WLAN sensing. IEEE 802.11-20/0905r2, July 2020.
  • [52] Kasher A. Introduction-to-usage-model-documents. IEEE 802.11-20/0937r0, July 2020.
  • [53] Wang P, Koike-Akino T, Orlik PV. WLAN localization and sensing with mid-grained channel measurements. IEEE 802.11-20/1074r1, July 2020.
  • [54] Da Silva C, Sadeghi B, Lomayev A, Chen C, Cordeiro C. Presence and proximity detection using WLAN sensing. IEEE 802.11-19/1772r0, October 2019.
  • [55] Wang P, Yu J, Koike-Akino T, Wang Y, Orlik PV. Feasibility study of human pose and occupancy classification using mmWave WiFi beam attributes. IEEE 802.11-20/1741r1, November 2020.
  • [56] Trainin S, Sambhwani S, Eitan A, Kasher A, Sagi A. In-car-sensing-a-60GHz-usage-example. IEEE 802.11-19-1852r0, November 2019.
  • [57] Chayat N, Popov M, Hoffman D, Rosenhouse T, Nadiri Z et al. Support of high-resolution imaging sensors. IEEE 802.11-20/1758r0, November 2020.
  • [58] Kasher A, Eitan A, Trainin S. Golay sequences and ambiguity function. IEEE 802.11-20/1444r1, September 2020.
  • [59] Du R, Pin DTK, Zhang M, Liu C, Sun Y. Discussion on WLAN sensing sequence design - follow up. IEEE 802.11- 20/1529r0, September 2020
  • [60] Pesin A, Haskou A, Louzir A, Yang R, Sahin O. A study on the impact of radar range resolution in different use cases. IEEE 802.11-20/1742r0, November 2020.
  • [61] Du R, Zhang M, Liu C, Sun Y, Tan DK et al. Discussion on WLAN sensing evaluation methodology. IEEE 802.11- 20/0907r1, June 2020.
  • [62] Du R, Zhang M, Liu C, Sun Y, Pin DTK et al. WLAN sensing link level simulation. IEEE 802.11-20/1642r0, October 2020.
  • [63] Feng C, Arshad Sh, Liu Y. Mais: multiple activity identification system using channel state information of wifi signals. In: Springer International Conference on Wireless Algorithms, Systems, and Applications (WASA); Guilin, China; 2017. pp. 419-432.
  • [64] Kihero A, Karabacak M, Arslan H. Emulation techniques for small scale fading aspects by using reverberation cham- ber. IEEE Transactions on Antennas and Propagation 2018; 67 (2): 1246-1258. doi: 10.1109/TAP.2018.2883571.
  • [65] Furqan HM, Solaija MSJ, Türkmen H, Arslan H. Wireless communication, sensing, and REM: a security perspective. Accepted for publication in IEEE Open Journal of the Communications Society.
  • [66] Mazahir S, Ahmed S, Alouini MS. A survey on joint communication-radar systems. TechRxiv 2020 (preprint). doi: 10.36227/techrxiv.13041887.v1
  • [67] Tusha SD, Tusha A, Basar E, Arslan H. Multidimensional index modulation for 5G and beyond wireless networks. Proceedings of the IEEE 2020 (early access). doi: 10.1109/JPROC.2020.3040589
  • [68] Chayat N, Popov M, Hoffman D, Podkamien I. Regulatory aspects of communications and sensing. IEEE 802.11- 20/1757r0, November 2020.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK