Engraved digit detection using HOG–real AdaBoost and deep neural network

Engraved digit detection using HOG–real AdaBoost and deep neural network

This paper proposes a framework for recognizing sequences of digits engraved on steel plates. These digits are normally blurred, dirty, not clear, tilted, and sometimes overlapped by other digits. Several digits in a string with uneven spacing and different sizes are detected at the same time. The framework consists of two main components called histogram of oriented gradient–real AdaBoost module and deep neural network module. The first component is used to detect digit windows, and the second component is employed to recognize digits inside the detected windows. Experimental results demonstrated that the proposed framework could be a potential solution to recognize the engraved digits.

___

  • 1] Lecun Y, Boser B, Denker JS, Henderson D, Howard RE et al. Handwritten digit recognition with a back-propagation network. In: 2nd International Conference on Neural Information Processing Systems; Denver, CO, USA; 1989. pp. 396-404.
  • [2] Matan O, Burges CJC, Lecun Y, Denker JS. Multi-digit recognition using a space displacement neural network. In: 4th International Conference on Neural Information Processing Systems; Denver, CO, USA; 1991. pp. 488-495.
  • [3] Parisi R, Claudio EDD, Lucarelli G, Orlandi G. Car plate recognition by neural networks and image processing. In: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems; Monterey, CA, USA; 1998. pp. 195-198.
  • [4] Anagnostopoulos CNE, Anagnostopoulos IE, Loumos V, Kayafas E. A license plate-recognition algorithm for Intelligent Transportation System Applications. IEEE Transactions on Intelligent Transportation Systems 2006; 7(3): 377-392. doi: 10.1109/TITS.2006.880641
  • [5] Hsieh P, Liang Y, Liao HM. Recognition of Blurred License Plate Images. In: 2010 IEEE International Workshop on Information Forensics and Security; Seattle, WA, USA; 2010. pp. 1-6
  • [6] Lecun Y, Jackel L, Bottou L, Cortes C, Denker J et al. Learning algorithms for classification: A comparison on handwritten digit recognition. In: Oh JH, Kwon C, Cho S (editors). Neural networks: The Statistical Mechanics Perspective. Singapore: World Scientific, 1995, pp. 261-276.
  • [7] Kussul E, Baidyk T. Improved method of handwritten digit recognition tested on MNIST database. Image and Vision Computing 2004; 22 (12): 971-981. doi: 10.1016/j.imavis.2004.03.008
  • [8] Simard PY, Steinkraus D, Platt J. Best practices for convolutional neural networks applied to visual document analysis. In: 7th International Conference on Document Analysis and Recognition; Edinburgh, UK; 2003. pp. 958-963.
  • [9] Sanchez DA, Bulon SG, Moreno L, Birlutiu A, Kadar M. Automatic Character Recognition in Porcelain Ware. Acta Technica Napocensis 2018; 59(3): 8-12.
  • [10] Patil AV, Dhanvijay MM. Engraved character recognition using computer vision to recognize engine and chassis numbers: Computer vision technique to identify engraved numbers. In: 2015 International Conference on Informa- tion Processing; Pune, India; 2015. pp. 151-154
  • [11] Zakaria Z, Suandi SA. Face detection using combination of Neural Network and AdaBoost. In: IEEE Region 10 Conference; Bali, Indonesia; 2011. pp. 335-338.
  • [12] Yang S, Chen LF, Yan T, Zhao YH, Fan YJ. An ensemble classification algorithm for convolutional neural network based on AdaBoost. In: 2017 IEEE/ACIS 16th International Conference on Computer and Information Science; Wuhan, China; 2017. pp. 401-406
  • 13] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; San Diego, CA, USA; 2005. pp. 886-893.
  • [14] Rätsch G, Onoda T, Müller KR. Soft margins for AdaBoost. Machine Learning 2001; 42(3): 287-320. doi: 10.1023/A:1007618119488
  • [15] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 1997; 55(1): 119-139. doi: 10.1006/jcss.1997.1504
  • [16] Huang C, Wu B, Ai H, Lao S. Omni-directional face detection based on real AdaBoost. In: IEEE International Conference on Image Processing; Singapore, Singapore; 2004. pp. 593-596.
  • [17] Yan C, Wang Y, Zhang Z. Face recognition based on real AdaBoost and Kalman Forecast. In: International Conference on Artificial Intelligence and Computational Intelligence; Taiyuan, China; 2011. pp. 489-496.
  • [18] Aoki D, Watada J. Human tracking method based on improved HOG+Real AdaBoost. In: 10th Asian Control Conference; Kota Kinabalu, Malaysia; 2015. pp. 1-6.
  • [19] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics 2000; 28(2): 337-407. doi: 10.1214/aos/1016218223
  • [20] Haykin S. Neural Networks and Learning Machines 3rd ed. Upper Saddle River, NJ, USA: Prentice Hall, 2009.
  • [21] Ravdin PM, Clark GM. A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Research and Treatment 1992; 22(3): 285-293. doi: 10.1007/BF01840841.
  • [22] Cardoso G, Rolim JG, Zurn HH. Application of neural-network modules to electricpower system fault section estimation. IEEE Transactions on Power Delivery 2004; 19(3): 1034-1041. doi: 10.1109/TPWRD.2004.829911.
  • [23] Celik AE, Karatepe Y. Evaluating and forecasting banking crises through neural network models: An application for Turkish banking sector. Expert Systems with Applications 2007; 33(4): 809-815. doi: 10.1016/j.eswa.2006.07.005.
  • [24] Grzonka D, Kolodziej J, Tao J, Khan SU. Artificial neural network support to monitoring of the evolutionary driven security aware scheduling in computational distributed environments. Future Generation Computer Systems 2015; 51: 72-86. doi: 10.1016/j.future.2014.10.031.
  • [25] Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks 2015; 61: 85-117. doi: 10.1016/j.neunet.2014.09.003.
  • [26] Bengio Y. Learning deep architectures for AI. Foundations and trends in Machine Learning 2009; 2(1): 1-127. doi: 10.1561/2200000006.
  • [27] Cheng Y. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 1995; 17(8):790-799. doi: 10.1109/34.400568.
  • [28] Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002; 24(5): 603-619. doi: 10.1109/34.1000236.
  • [29] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. In: Neural Information Processing Systems; Stateline, NV, USA; 2012. pp. 1-9
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK