COVID-19 detection on IBM quantum computer with classical-quantum transfer learning

COVID-19 detection on IBM quantum computer with classical-quantum transfer learning

Diagnose the infected patient as soon as possible in the coronavirus 2019 (COVID-19) outbreak which is declared as a pandemic by the world health organization (WHO) is extremely important. Experts recommend CT imaging as a diagnostic tool because of the weak points of the nucleic acid amplification test (NAAT). In this study, the detection of COVID-19 from CT images, which give the most accurate response in a short time, was investigated in the classical computer and firstly in quantum computers. Using the quantum transfer learning method, we experimentally perform COVID-19 detection in different quantum real processors (IBMQx2, IBMQ-London and IBMQ-Rome) of IBM, as well as in different simulators (Pennylane, Qiskit-Aer and Cirq). By using a small number of data sets such as 126 COVID-19 and 100 normal CT images, we obtained a positive or negative classification of COVID-19 with 90% success in classical computers, while we achieved a high success rate of 94%–100% in quantum computers. Also, according to the results obtained, machine learning process in classical computers requiring more processors and time than quantum computers can be realized in a very short time with a very small quantum processor such as 4 qubits in quantum computers. If the size of the data set is small; due to the superior properties of quantum, it is seen that according to the classification of COVID-19 and normal, in terms of machine learning, quantum computers seem to outperform traditional computers

___

  • [1] Zhu N, Zhang D, Wang W, Li X, Yang B et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine 2020; 382: 727-733. doi: 10.1056/NEJMoa2001017
  • [2] Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020; 25 (3): 2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045
  • [3] Dai WC, Zhang HW, Yu J, Xu HJ, Chen H et al. CT imaging and differential diagnosis of COVID-19. Canadian Association of Radiologists Journal 2020; 71 (2): 195-200. doi: 10.1177/0846537120913033
  • [4] Ozkaya U, Ozturk S, Barstugan M. Coronavirus (COVID-19) classification using deep features fusion and ranking technique. arXiv preprint 2020; arXiv:2004.03698.
  • [5] Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology 2020; 94 (7). doi: 10.1128/JVI.00127-20
  • [6] Pan SJ, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 2009; 22 (10): 1345-1359. doi: 10.1109/TKDE.2009.191
  • [7] Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. Journal of Big Data 2019; 6 (1): 60. doi: 10.1186/s40537-019-0197-0
  • [8] Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. Journal of Big Data 2016; 3 (1): 9. doi: 10.1186/s40537-016-0043-6
  • [9] Tan C, Sun F, Kong T, Zhang W, Yang C et al. A survey on deep transfer learning. In: International Conference on Artificial Neural Networks; Rhodes, Greece; 2018. pp. 270-279. doi: 10.1007/978-3-030-01424-7
  • [10] Killoran N, Bromley TR, Arrazola JM, Schuld M, Quesada N et al. Continuous-variable quantum neural networks. Physical Review Research 2019; 1 (3): 033063. doi: 10.1103/PhysRevResearch.1.033063
  • [11] Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning. Contemporary Physics 2015; 56 (2): 172-185. doi: 10.1080/00107514.2014.964942
  • [12] Nielsen MA, Chuang I. Quantum computation and quantum information. College Park, MD, USA: American Association of Physics Teachers, 2002.
  • [13] Mermin ND. Quantum Computer Science: An Introduction. Cambridge, UK: Cambridge University Press, 2007.
  • [14] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N et al. Quantum machine learning. Nature 2017; 549 (7671): 195-202. doi: 10.1038/nature23474
  • [15] Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A et al. Supervised learning with quantum-enhanced feature spaces. Nature 2019; 567 (7747): 209-212. doi: 10.1038/s41586-019-0980-2
  • [16] Kiani BT, Villanyi A, Lloyd S. Quantum medical imaging algorithms. arXiv 2020; arXiv:2004.02036.
  • [17] Lloyd S, Mohseni M, Rebentrost P. Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint 2013; arXiv:1307.0411.
  • [18] Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification. Physical Review Letters 2014; 113 (13): 130503. doi: 10.1103/PhysRevLett.113.130503
  • [19] Giovannetti V, Lloyd S, Maccone L. Quantum random access memory. Physical Review Letters 2008; 100 (16):
  • 160501. doi: 10.1103/PhysRevLett.100.160501 [20] Wiebe N, Kapoor A, Svore KM. Quantum nearest-neighbor algorithms for machine learning. Quantum Information and Computation 2018; 15 (3): 0318-0358. doi: 10.5555/2871393.2871400
  • [21] Grant E, Benedetti M, Cao S, Hallam A, Lockhart J et al. Hierarchical quantum classifiers. npj Quantum Information 2018; 4 (1): 1-8. doi: 10.1038/s41534-018-0116-9
  • [22] Kapoor A, Wiebe N, Svore K. Quantum perceptron models. In: Advances in Neural Information Processing Systems; Barcelona, Spain; 2016. pp. 3999-4007.
  • [23] Farhi E, Neven H. Classification with quantum neural networks on near term processors. arXiv preprint 2018; arXiv:1802.06002.
  • [24] Cai XD, Wu D, Su ZE, Chen MC, Wang XL et al. Entanglement-based machine learning on a quantum computer. Physical Review Letters 2015; 114 (11): 110504. doi: 10.1103/PhysRevLett.114.110504
  • [25] Mari A, Bromley TR, Izaac J, Schuld M, Killoran N. Transfer learning in hybrid classical-quantum neural networks. arXiv preprint 2019; arXiv:1912.08278.
  • [26] Zen R, My L, Tan R, Hébert F, Gattobigio M et al. Transfer learning for scalability of neural-network quantum states. Physical Review E 2020; 101 (5): 053301. doi: 10.1103/PhysRevE.101.053301
  • [27] Piat S, Usher N, Severini S, Herbster M, Mansi T et al. Image classification with quantum pre-training and auto- encoders. International Journal of Quantum Information 2018; 16 (8): 1840009. doi: 10.1142/S0219749918400099
  • [28] Verdon G, Broughton M, McClean JR, Sung KJ, Babbush R et al. Learning to learn with quantum neural networks via classical neural networks. arXiv preprint 2019; arXiv:1907.05415.
  • [29] Henderson M, Shakya S, Pradhan S, Cook T. Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence 2020; 2 (1): 1-9. doi: 10.1007/s42484-020-00012-y
  • [30] Azad R, Asadi-Aghbolaghi M, Fathy M, Escalera S. Bi-directional ConvLSTM U-Net with densley connected convolutions. In: Proceedings of the IEEE International Conference on Computer Vision Workshops; Seoul, South Korea; 2019. pp. 406-415. doi: 10.1109/ICCVW.2019.00052
  • [31] Oluyide OM, Tapamo JR, Viriri S. Automatic lung segmentation based on Graph Cut using a distance-constrained energy. IET Computer Vision 2018: 12 (5): 609-615. doi: 10.1049/iet-cvi.2017.0226
  • [32] Russakovsky O, Deng J, Su H, Krause J, Satheesh S et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision 2015; 115 (3): 211-252. doi: 10.1007/s11263-015-0816-y
  • [33] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Seattle, WA USA; 2016. pp. 770-778. doi: 10.1109/CVPR.2016.90
  • [34] Schuld M, Bocharov A, Svore KM, Wiebe N. Circuit-centric quantum classifiers. Physical Review A 2020; 101 (3): 032308. doi: 10.1103/PhysRevA.101.032308
  • [35] Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint 2014; arXiv:1412.6980.
  • [36] Kassani SH, Kassasni PH, Wesolowski MJ, Schneider KA, Deters R. Automatic detection of coronavirus disease (COVID-19) in X-ray and CT Images: a machine learning-based approach. arXiv preprint 2020; arXiv:2004.10641.
  • [37] Giovannetti V, Lloyd S, Maccone L. Quantum random access memory. Physical Review Letters 2008; 100 (16): 160501. doi: 10.1103/PhysRevLett.100.160501
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK