Wavelength sensitivity of indium tin oxide on surface plasmon resonance angles

Wavelength sensitivity of indium tin oxide on surface plasmon resonance angles

Surface plasmon resonance (SPR) is a charge-density oscillation that occurs when a beam of p-polarized monochromatic light impinges with a greater angle than the critical angle in a dielectric-metal interface. Because of the high losses related to metals, the generated surface plasmon waves propagate with high attenuation in the visible and near-infrared spectral regions in most of the dielectric-metal interfaces. An alternative to reduce such losses is to use a transparent indium tin oxide (ITO) film. In this paper, we compared theoretical calculations and experimental measurements of the SPR angle θSP R on the interfaces of a borosilicate prism (Bp) and ITO, Bp-Ag, and Bp-Au. Three different wavelengths (405, 532, and 650 nm) were used to measure θSP R that covered almost all of the visual range spectrum. Both calculations and experimental data showed that SPR characteristics are strongly influenced by the metal’s optical properties. The measured θSP R in the Bp-ITO interface is much smaller than the θSP R measured in the other two interfaces. Hence, ITO can be used in a similar way as Au and Ag in prism-metal interfaces, providing a cheaper and more versatile option to generate the SPR effect.

___

  • [1] Rizal C, Pisana S, Hrvoic I. Improved magneto-optic surface plasmon resonance biosensors. Photonics 2018; 5 (15): 1-16. doi: 10.3390/photonics5030015
  • [2] Ajiki Y, Kan T, Matsumoto K, Shimoyama I. Electrically detectable surface plasmon resonance sensor by combining a gold grating and a silicon photodiode. Applied Physics Express 2018; 11: 022001. doi: 10.7567/APEX.11.022001
  • [3] Pockrand I, Swalen JD, Gordon JD 2nd, Philpott MR. Surface plasmon spectroscopy of organic monolayer assem- blies. Surface Science 1978; 74: 273-244. doi: 10.1016/0039-6028(78)90283-2
  • [4] Gordon JD 2nd, Erns S. Surface plasmons as a probe of the electrochemical interface. Surface Science 1980; 101: 499-506. doi: 10.1016/0039-6028(80)90644-5
  • [5] Liedberg B, Nilander C, Lundstrom I. Biosensing with surface plasmon resonance—how it all started. Biosensors and Bioelectronics 1995; 10: i-ix. doi: 10.1016/0956-5663(95)96965-2
  • [6] Armelles G, Cebollada A, Garcia-Martin A, González MU. Magnetoplasmonics: combining magnetic and plasmonic functionalities. Advanced Optical Materials 2013; 1: 2–21. doi: 10.1002/adom.201200011
  • 7] Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Analytical Chemistry 2016; 78 (12): 3859–3874. doi: 10.1021/ac060490z
  • [8] Brecht A, Gauglitz G. Optical probes and transducers. Biosensors and Bioelectronics 1995; 10: 923–936. doi: 10.1016/0956-5663(95)99230-1
  • [9] Gauglitz G. Opto-chemical and opto-immuno sensors. Sensors Update 1996; 1 (1): 1–48. doi: 10.1002/1616- 8984(199607)1
  • [10] Peterson AW, Halter M, Plant LA, Elliot J. Surface plasmon resonance microscopy: achieving a quantitative optical response. Review of Scientific Instruments 2016; 87 (9): 093703. doi: 10.1063/1.4962034
  • [11] Tang Y, Zeng X, Liang J. Surface plasmon resonance: an introduction to a surface spectroscopy technique. Journal of Chemical Education 2010; 87 (7): 742–746. doi: 10.1021/ ed100186y
  • [12] Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical 1999; 54: 3–15. doi: 10.1016/S0925-4005(98)00321-9
  • [13] Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin, Germany: Springer-Verlag, 1988. doi: 10.1007/BFb0048317
  • [14] Ordal MA, Long LL, Bell RJ, Bell SE, Berll RR et al. Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Applied Optics 1983; 22 (7): 1099-1119. doi: 10.1364/ AO.22.001099
  • [15] Rizal C, Pisana S, Hrvoic I, Fullerton EE. Microstructure and magneto-optical surface plasmon resonance of Co/Au multilayers. Journal of Physics Communications 2018; 2018: 2055010. doi: 10.1088/0143-0807/32/2/028
  • [16] Ferreiro-Vila E, Bendana XM, Gonzalez-Diaz JB, Garcia-Martin A, Cebollada A et al. Surface plasmon resonance effects in the magneto-optical activity of Ag/Co/Ag trilayers. IEEE Transactions on Magnetics 2008; 44 (11): 3303–3306. doi: 10.1109/TMAG.2008.2002381
  • [17] Patskovsky S, Kabashin AV, Meunier M, Luong JHT. Properties and sensing characteristics of surface plas- mon resonance in infrared light. Journal of the Optical Society of America A 2003; 20 (8): 1644-1650. doi: 10.1364/JOSAA.20.001644
  • [18] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy RV et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology 2010; 5 (11): 783-787. doi: 10.1038/nnano. 2010.209
  • [19] Sipova H, Piliarik M, Vala M, Chadt K, Adam P et al. Portable surface plasmon resonance biosensor for detection of nucleic acids. Procedia Engineering 2011; 25: 148-151. doi: 10.1016/j.proeng.2011.12.037
  • [20] Pluchery O, Vayron R, Van KM. Laboratory experiments for exploring the surface plasmon resonance. European Journal of Physics 2011; 32 (2): 585-599. doi: 10.1088/0143-0807/32/2/028
  • [21] Lewis BG, Paine DC. Applications and processing of transparent conducting oxide. MRS Bulletin 2000; 25 (8): 22-27. doi: 10.1557/mrs2000.147
  • [22] Hossain-Kham MZ, Harkin-Jones E. Effect of ITO surface properties on SAM modification: a review toward biosensors applications. Cogent Engineering 2016; 3 (1): 1170097. doi: 10.1080/23311916.2016. 1170097
  • [23] Aydin EB, Sezginturk MK, Indium tin oxide (ITO): a promising material in biosensing technology. Trends in Analytical Chemistry 2017; 97: 309-315. doi: 10.1016/j.trac.2017.09.021
  • [24] Fan X, White IM, Shopova SI, Zhu H, Suter JD et al. Sensitive optical biosensors for unlabeled targets: a review. Analytica Chimica Acta 2008; 620 (1-2): 8-26. doi: /10.1016/j.aca.2008.05.02210
  • [25] Simon HJ, Mitchell DE, Watson JG. Surface plasmons in silver films – a novel undergraduate experiment. American Journal of Physics 1975; 43 (7): 630-636. doi: 10.1119/1.9764
  • [26] Caloz C, Itoh T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Hoboken, NJ, USA: John Wiley and Sons, 2006. doi: 10.1002/cphc.200600693
  • 27] Babar S, Weaver JH. Optical constants of Cu, Ag, and Au revisited. Applied Optics 2015; 54 (3): 477-481. doi: 10.1364/AO.54.000477
  • [28] Werner JG, Knut DP. Refractive Index Profiling Technique. US patent US20100245805A1, 2009.
  • [29] Whitman PK, Hahn DE, Soules TE, Norton MA, Dixit SN et al. Performance of thin borosilicate glass sheets at 351 nm. In: Boulder Damage Symposium XXXVI; Boulder, CO, USA; 2004.
  • [30] Fahland M, Vogt T, Schoenberger W, Schiller N. Optical properties of metal based transparent electrodes on polymer films. Thin Solid Films 2008; 516 (17): 5777-5780. doi: 10.1016/j.tsf.2007.10.03222