Wavelength sensitivity of indium tin oxide on surface plasmon resonance angles

Wavelength sensitivity of indium tin oxide on surface plasmon resonance angles

Surface plasmon resonance (SPR) is a charge-density oscillation that occurs when a beam of p-polarized monochromatic light impinges with a greater angle than the critical angle in a dielectric-metal interface. Because of the high losses related to metals, the generated surface plasmon waves propagate with high attenuation in the visible and near-infrared spectral regions in most of the dielectric-metal interfaces. An alternative to reduce such losses is to use a transparent indium tin oxide (ITO) film. In this paper, we compared theoretical calculations and experimental measurements of the SPR angle θSP R on the interfaces of a borosilicate prism (Bp) and ITO, Bp-Ag, and Bp-Au. Three different wavelengths (405, 532, and 650 nm) were used to measure θSP R that covered almost all of the visual range spectrum. Both calculations and experimental data showed that SPR characteristics are strongly influenced by the metal’s optical properties. The measured θSP R in the Bp-ITO interface is much smaller than the θSP R measured in the other two interfaces. Hence, ITO can be used in a similar way as Au and Ag in prism-metal interfaces, providing a cheaper and more versatile option to generate the SPR effect.

___

  • [1] Rizal C, Pisana S, Hrvoic I. Improved magneto-optic surface plasmon resonance biosensors. Photonics 2018; 5 (15): 1-16. doi: 10.3390/photonics5030015
  • [2] Ajiki Y, Kan T, Matsumoto K, Shimoyama I. Electrically detectable surface plasmon resonance sensor by combining a gold grating and a silicon photodiode. Applied Physics Express 2018; 11: 022001. doi: 10.7567/APEX.11.022001
  • [3] Pockrand I, Swalen JD, Gordon JD 2nd, Philpott MR. Surface plasmon spectroscopy of organic monolayer assem- blies. Surface Science 1978; 74: 273-244. doi: 10.1016/0039-6028(78)90283-2
  • [4] Gordon JD 2nd, Erns S. Surface plasmons as a probe of the electrochemical interface. Surface Science 1980; 101: 499-506. doi: 10.1016/0039-6028(80)90644-5
  • [5] Liedberg B, Nilander C, Lundstrom I. Biosensing with surface plasmon resonance—how it all started. Biosensors and Bioelectronics 1995; 10: i-ix. doi: 10.1016/0956-5663(95)96965-2
  • [6] Armelles G, Cebollada A, Garcia-Martin A, González MU. Magnetoplasmonics: combining magnetic and plasmonic functionalities. Advanced Optical Materials 2013; 1: 2–21. doi: 10.1002/adom.201200011
  • 7] Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Analytical Chemistry 2016; 78 (12): 3859–3874. doi: 10.1021/ac060490z
  • [8] Brecht A, Gauglitz G. Optical probes and transducers. Biosensors and Bioelectronics 1995; 10: 923–936. doi: 10.1016/0956-5663(95)99230-1
  • [9] Gauglitz G. Opto-chemical and opto-immuno sensors. Sensors Update 1996; 1 (1): 1–48. doi: 10.1002/1616- 8984(199607)1
  • [10] Peterson AW, Halter M, Plant LA, Elliot J. Surface plasmon resonance microscopy: achieving a quantitative optical response. Review of Scientific Instruments 2016; 87 (9): 093703. doi: 10.1063/1.4962034
  • [11] Tang Y, Zeng X, Liang J. Surface plasmon resonance: an introduction to a surface spectroscopy technique. Journal of Chemical Education 2010; 87 (7): 742–746. doi: 10.1021/ ed100186y
  • [12] Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical 1999; 54: 3–15. doi: 10.1016/S0925-4005(98)00321-9
  • [13] Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin, Germany: Springer-Verlag, 1988. doi: 10.1007/BFb0048317
  • [14] Ordal MA, Long LL, Bell RJ, Bell SE, Berll RR et al. Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Applied Optics 1983; 22 (7): 1099-1119. doi: 10.1364/ AO.22.001099
  • [15] Rizal C, Pisana S, Hrvoic I, Fullerton EE. Microstructure and magneto-optical surface plasmon resonance of Co/Au multilayers. Journal of Physics Communications 2018; 2018: 2055010. doi: 10.1088/0143-0807/32/2/028
  • [16] Ferreiro-Vila E, Bendana XM, Gonzalez-Diaz JB, Garcia-Martin A, Cebollada A et al. Surface plasmon resonance effects in the magneto-optical activity of Ag/Co/Ag trilayers. IEEE Transactions on Magnetics 2008; 44 (11): 3303–3306. doi: 10.1109/TMAG.2008.2002381
  • [17] Patskovsky S, Kabashin AV, Meunier M, Luong JHT. Properties and sensing characteristics of surface plas- mon resonance in infrared light. Journal of the Optical Society of America A 2003; 20 (8): 1644-1650. doi: 10.1364/JOSAA.20.001644
  • [18] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy RV et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology 2010; 5 (11): 783-787. doi: 10.1038/nnano. 2010.209
  • [19] Sipova H, Piliarik M, Vala M, Chadt K, Adam P et al. Portable surface plasmon resonance biosensor for detection of nucleic acids. Procedia Engineering 2011; 25: 148-151. doi: 10.1016/j.proeng.2011.12.037
  • [20] Pluchery O, Vayron R, Van KM. Laboratory experiments for exploring the surface plasmon resonance. European Journal of Physics 2011; 32 (2): 585-599. doi: 10.1088/0143-0807/32/2/028
  • [21] Lewis BG, Paine DC. Applications and processing of transparent conducting oxide. MRS Bulletin 2000; 25 (8): 22-27. doi: 10.1557/mrs2000.147
  • [22] Hossain-Kham MZ, Harkin-Jones E. Effect of ITO surface properties on SAM modification: a review toward biosensors applications. Cogent Engineering 2016; 3 (1): 1170097. doi: 10.1080/23311916.2016. 1170097
  • [23] Aydin EB, Sezginturk MK, Indium tin oxide (ITO): a promising material in biosensing technology. Trends in Analytical Chemistry 2017; 97: 309-315. doi: 10.1016/j.trac.2017.09.021
  • [24] Fan X, White IM, Shopova SI, Zhu H, Suter JD et al. Sensitive optical biosensors for unlabeled targets: a review. Analytica Chimica Acta 2008; 620 (1-2): 8-26. doi: /10.1016/j.aca.2008.05.02210
  • [25] Simon HJ, Mitchell DE, Watson JG. Surface plasmons in silver films – a novel undergraduate experiment. American Journal of Physics 1975; 43 (7): 630-636. doi: 10.1119/1.9764
  • [26] Caloz C, Itoh T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Hoboken, NJ, USA: John Wiley and Sons, 2006. doi: 10.1002/cphc.200600693
  • 27] Babar S, Weaver JH. Optical constants of Cu, Ag, and Au revisited. Applied Optics 2015; 54 (3): 477-481. doi: 10.1364/AO.54.000477
  • [28] Werner JG, Knut DP. Refractive Index Profiling Technique. US patent US20100245805A1, 2009.
  • [29] Whitman PK, Hahn DE, Soules TE, Norton MA, Dixit SN et al. Performance of thin borosilicate glass sheets at 351 nm. In: Boulder Damage Symposium XXXVI; Boulder, CO, USA; 2004.
  • [30] Fahland M, Vogt T, Schoenberger W, Schiller N. Optical properties of metal based transparent electrodes on polymer films. Thin Solid Films 2008; 516 (17): 5777-5780. doi: 10.1016/j.tsf.2007.10.03222
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Reducing computational complexity in fingerprint matching

Munazza ARSHAD, Mubeen SABIR, Tariq M. KHAN, Sana MUNAWAR

Optimized idling grid-connection strategy for synchronous condenser

Xiangjian SHI, Heqing HUANG, Teng LIU, Wei MU, Jianfeng ZHAO

Performance optimisation of a sensing chamber using fluid dynamics simulation for electronic nose applications

Punjan DOHARE, Sudeshna BAGCHI, Amol P BHONDEKAR

An improved memetic genetic algorithm based on a complex network as a solution to the traveling salesman problem

Hadi MOHAMMADI, Kamal MIRZAIE, Mohammad Reza MOLLAKHALILI MEYBODI

Impulse noise removal by k-means clustering identified fuzzy filter: a new approach

Aritra BANDYOPADHYAY, Kaustuv DEB, Atanu DAS, Rajib BAG

Reconfiguration-based hierarchical energy management in multimicrogrid systems considering power losses, reliability index, and voltage enhancemen

Navid TAGHIZADEGAN KALANTARI, Sajad NAJAFI RAVADANEGH, Farid HAMZEH AGHDAM

mage subset communication for resource-constrained applications in wirelesssensor networksapplications in wirelesssensor networks

Sajid NAZIR, Omar A. ALZUBI, Mohammad KALEEM, Hassan HAMDOUN

Efficient bandwidth management algorithm for NG-EPON

Ammar RAFIQ, Muhammad Faisal HAYAT

Optimum reference distance based path loss exponent determination for vehicle-to-vehicle communication

Zeynep HASIRCI, Kenan KUZULUGİL, İsmail Hakkı ÇAVDAR

Fuzzy genetic based dynamic spectrum allocation approach for cognitive radio sensor networks

Utku KÖSE, Bharat BHUSHAN, Ganesan RAJESH, Xavier Mercilin RAAJINI, Kulandairaj Martin SAGAYAM