An adaptive scheduling scheme for inhomogeneously distributed wireless ad hoc networks

An adaptive scheduling scheme for inhomogeneously distributed wireless ad hoc networks

An efficient scheduling strategy guarantees the simultaneous transmission and successful reception by thescheduled nodes even inside a congested wireless ad hoc network. Owing to the dispersed nature of ad hoc networks, thenode packing algorithm needs to be implementable without having network-wide channel state information and shouldadditionally be able to pack the optimum number of successful transmissions. The proposed algorithm, for a networkwith nonhomogeneously distributed nodes, makes the decision to either inhibit or permit an active interferer around anactive receiver based on the interferer’s transmission power. The analysis evidenced that the suggested scheme providesan estimated 100 times superior transmission capacity when equated to the random aloha scheme. Moreover, theproposed strategy proved its vitality by demonstrating substantial improvement in transmission and transport capacityin comparison to the preexisting renowned scheduling schemes for distributed networks. The final results present aclosed-form formula for the best possible exclusion-zone size multiplier factor in terms of the network parameters, i.e.the network’s path-loss exponent, spreading gain, SINR threshold, outage constraint, and Tx-Rx separation.

___

  • [1] Qiu T, Chen N, Li K, Qiao D, Fu Z. Heterogeneous ad hoc networks: architectures, advances and challenges. Ad Hoc Networks 2017; 55: 143-152. doi: 10.1016/j.adhoc.2016.11.001
  • [2] Hwang I, Song B, Soliman S. A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine 2013; 51 (6): 20-27. doi: 10.1109/MCOM.2013.6525591
  • [3] Asadi A, Wang Q, Mancuso V. A survey on device-to-device communication in cellular networks. IEEE Communications Surveys Tutorials 2014; 16 (4): 1801-1819. doi: 10.1109/COMST.2014.2319555
  • [4] Kim J, Lee J, Kim J, Yun J. M2M service platforms: survey, issues, and enabling technologies. IEEE Communications Surveys Tutorials 2014; 16 (1): 61-76. doi: 10.1109/SURV.2013.100713.00203
  • [5] Hasan A, Ali A. Guard zone-based scheduling in ad hoc networks. Computer Communications 2015; 56: 89-97. doi: 10.1016/j.comcom.2014.11.004
  • [6] Ajmal S, Jabeen S, Rasheed A, Hasan A. An intelligent hybrid spread spectrum MAC for interference management in mobile ad hoc networks. Computer Communications 2015; 72: 116-129. doi: 10.1016/j.comcom.2015.04.006
  • [7] Mao Y, Yan F, Shen L. Multi-round elimination contention-based multi-channel MAC scheme for vehicular ad hoc networks. IET Communications 2017; 11 (3): 421-427. doi: 10.1049/iet-com.2016.0774
  • [8] Li X, Zhang Y, Zhao S, Shen Y, Jiang X. Exact secrecy throughput capacity study in mobile ad hoc networks. Ad Hoc Networks 2018; 72: 105-114. doi: 10.1016/j.adhoc.2018.01.012
  • [9] Pala Z, İnanç N. The impact of disabling suspicious node communications on network lifetime in wireless ad hoc sensor networks. Turkish Journal of Electrical Engineering & Computer Sciences 2016; 24 (5): 4429-4444. doi: 10.3906/elk-1411-198
  • [10] Sivakumar T, Manoharan R. ERP: An efficient reactive routing protocol for dense vehicular ad hoc networks. Turkish Journal of Electrical Engineering & Computer Sciences 2017; 25 (3): 1762-1772. doi: 10.3906/elk-1507-147
  • [11] Su H, Moh S. A robust deafness-free MAC protocol for directional antennas in ad hoc networks. Wireless Personal Communications 2017; 96 (1): 1111-1129. doi: 10.1007/s11277-017-4227-y
  • [12] Pourgolzari V, Ghorashi S. A CDMA based MAC protocol for ad hoc networks with directional antennas. In: Proceedings of International Symposium on Computer Networks and Distributed Systems; Tehran, Iran; 2011. pp. 73-77.
  • [13] Zhang J, Dziong Z, Gagnon F, Kadoch M. Multiuser detection based MAC design for ad hoc networks. IEEE Transactions on Wireless Communications 2009; 8 (4): 1836-1846. doi: 10.1109/T-WC.2008.071449
  • [14] Ganti RK, Haenggi M. Interference and outage in clustered wireless ad hoc networks. IEEE Transactions on Information Theory 2009; 55 (9): 4067-4086. doi: 10.1109/TIT.2009.2025543
  • [15] Torrieri D, Valenti MC. Exclusion and guard zones in DS-CDMA ad hoc networks. IEEE Transactions on Communications 2013; 61 (6): 2468-2476. doi: 10.1109/TCOMM.2013.041113.120714
  • [16] Hasan A, Andrews J. The guard zone in wireless ad hoc networks. IEEE Transaction on Wireless Communications 2007; 6 (3): 897-906. doi: 10.1109/TWC.2007.04793
  • [17] Schilcher U, Brandner G, Bettstetter C. Quantifying inhomogeneity of spatial point patterns. Computer Networks 2017; 115: 65-81. doi: 10.1016/j.comnet.2016.12.018
  • [18] Mukherjee S, Avidor D. Outage probabilities in Poisson and clumped Poisson-distributed hybrid ad-hoc networks. In: Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks; Santa Clara, CA, USA; 2005. pp. 563-574.
  • [19] Alfano G, Garetto M, Leonardi E. Capacity scaling of wireless networks with inhomogeneous node density: Lower bounds. In: 28th IEEE Conference on Computer Communications; Rio de Janeiro, Brazil; 2009. pp. 1890-1898.
  • [20] IEEE. Standard for Information Technology - Local and Metropolitan Area Networks - Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 8: IEEE 802.11 Wireless Network Management. IEEE Std 802.11v-2011. New York, NY, USA: IEEE, 2011. doi: 10.1109/IEEESTD.2011.5716530
  • [21] Sial N, Ahmed J. A novel and realistic hybrid downlink-uplink coupled/decoupled access scheme for 5G HetNets. Turkish Journal of Electrical Engineering & Computer Sciences 2017; 25 (6): 4457-4473. doi: 10.3906/elk-1612-167
  • [22] Tian J, Zhang H, Wu D, Yuan D. QoS-constrained medium access probability optimization in wireless interference-limited networks. IEEE Transactions on Communications 2018; 66 (3): 1064-1077. doi: 10.1109/TCOMM.2017.2775239
  • [23] Baccelli F, Blaszczyszyn B, Muhlethaler P. An Aloha protocol for multihop mobile wireless networks. IEEE Transactions on Information Theory 2006; 52 (2): 421-436. doi: 10.1109/TIT.2005.862098
  • [24] Yang X, Veciana G. Inducing multiscale clustering using multistage MAC contention in CDMA ad hoc networks. IEEE/ACM Transactions on Networking 2007; 15 (6): 1387-1400. doi: 10.1109/TNET.2007.902690
  • [25] Muqattash A, Krunz M. CDMA-based MAC protocol for wireless ad hoc networks. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing; Annapolis, MD, USA; 2003. pp. 153-164.
  • [26] Gupta P, Kumar PR. The capacity of wireless networks. IEEE Transactions on Information Theory 2000; 46 (2): 388-404. doi: 10.1109/18.825799
  • [27] Afshang M, Saha C, Dhillon HS. Nearest-neighbor and contact distance distributions for Thomas cluster process. IEEE Wireless Communications Letters 2017; 6 (1): 130-133. doi: 10.1109/LWC.2016.2641935
  • [28] Afshang M, Saha C, Dhillon HS. Nearest-neighbor and contact distance distributions for Matérn cluster process. IEEE Communications Letters 2017; 21 (12): 2686-2689. doi: 10.1109/LCOMM.2017.2747510
  • [29] Bettstetter C, Gyarmati M, Schilcher U. An inhomogeneous spatial node distribution and its stochastic properties. In: Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems; Chania, Greece; 2007. pp. 400-404.
  • [30] Santi P, Blough DM. The critical transmitting range for connectivity in sparse wireless ad hoc networks. IEEE Transactions on Mobile Computing 2003; 2 (1): 25-39. doi: 10.1109/TMC.2003.1195149
  • [31] Weber SP, Yang X, Andrews J, Veciana G. Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Transactions on Information Theory 2005; 51 (12): 4091-4102. doi: 10.1109/TIT.2005.858939
  • [32] Sousa ES, Silvester J. Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network. IEEE Journal on Selected Areas in Communications 1990; 8 (4): 762-771. doi:10.1109/49.56383
  • [33] Aljuaid M, Yanikomeroglu H. Investigating the Gaussian convergence of the distribution of the aggregate interference power in large wireless networks. IEEE Transactions on Vehicular Technology 2010; 59 (9): 4418-4424. doi: 10.1109/TVT.2010.2067452
  • [34] Rappaport TS. Wireless Communications: Principles and Practice. 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall, 2002.
  • [35] Miranda J, Abrishambaf R, Gomes T, Gonçalves P, Cabral J et al. Path loss exponent analysis in wireless sensor networks: Experimental evaluation. In: 11th IEEE International Conference on Industrial Informatics; Bochum, Germany; 2013. pp. 54-58.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Robust power system state estimation by appropriate selection of tolerance for the least measurement rejected algorithm

Mohammad Shoaib SHAHRIAR, Ibrahim Omar HABIBALLAH

Optimal DG allocation for enhancing voltage stability and minimizing power loss using hybrid gray wolf optimizer

Ayman AWAD, Salah KAMEL, Hussein ABDEL MAWGOUD, Francisco JURADO

Spatial-aware global contrast representation for saliency detection

Dan XU, Xin ZUO, Shucheng HUANG

Low leakage pocket junction-less DGTFET with biosensing cavity region

Suman Lata TRIPATH, Vimal Kumar AGRAWAL, Raju PATEL

A comparative study of nonlinear Bayesian filtering algorithms for estimation of gene expression time series data

Asma MEDDEB, Souad CHEBBI, Nesrine AMOR, Sahbi MARROUCHI

State-space identification of switching linear discrete time-periodic systems with known scheduling signals

İsmail UYANIK, Hasan HAMZAÇEBİ, M. Mert ANKARALI

A computational study on aging effect for facial expression recognition

Elena BATTINI SÖNMEZ

A comparative study on handwritten Bangla character recognition

Atiqul Islam RIZVI, Tahmina KHANAM, Kaushik DEB, Ibrahim KHAN, Saki KOWSAR

A quasi-Z-source active neutral point clamped inverter topology employing symmetrical/unsymmetrical boost modulation control scheme for renewable energy resources

Salman MAJEED, Rehan MAJEED, M. Imtiaz HUSSAIN, Danial SALEEM, Muhammad Rehan USMAN, Muhammad Talha GUL

Improving the redundancy of Knuth’s balancing scheme for packet transmission systems

Ebenezer ESENOGHO, Hendrik FERREIRA, Elie NGOMSEU MAMBOU