In-field failure assessment of tractor hydraulic system operation via pseudospectrum of acoustic measurements

In-field failure assessment of tractor hydraulic system operation via pseudospectrum of acoustic measurements

Hydrological working conditions are critical indicators for the maintenance of tractor mechanical systems.This research presents a pseudospectrum approach to analyze the particle pollution level of the hydraulic filter in itsaging process and thus on-time prediction and diagnosis of weak or faulty conditions. The practical experiments ofpseudospectrum analysis are performed on oil filter sound records. For mobile application purposes, besides deploymentof advanced audio recording equipment, three popular brands of cell phones are used. The soundtracks are recordedin different incremental stages of fluid contamination by pollutive particles until being choked based on the ISO4406standard. The pseudospectrum of the oil filter acoustics leads to two numerical features: the low-band energy and 12.5kHz relative peak energy (12.5RPE). This manuscript proposes these two features for efficient on-line monitoring of theliquid cleanliness level as well as the prediction and diagnosis of choked condition of the tractor hydraulic system.

___

  • [1] Nunez DL, Borsato M. OntoProg. An ontology-based model for implementing Prognostics Health Management in mechanical machines. Advanced Engineering Informatics 2018; 38: 746-759. doi: 10.1016/j.aei.2018.10.006
  • [2] Deutsch J, He D. Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2018; 48 (1): 11-20. doi: 10.1109/TSMC.2017.2697842
  • [3] Lei Y, Li N, Guo L, Li N, Yan T et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing 2018; 104: 799-834. doi: 10.1016/j.ymssp.2017.11.016
  • [4] Ragab A, Yacout S, Ouali MS, Osman H. Prognostics of multiple failure modes in rotating machinery using a pattern-based classifier and cumulative incidence functions. Journal of Intelligent Manufacturing 2019; 30 (1): 255-274. doi: 10.1007/s10845-016-1244-8
  • [5] Gebraeel N, Lawley M, Liu R, Parmeshwaran V. Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Transactions on Industrial Electronics 2004; 51 (3): 694-700. doi: 10.1109/TIE.2004.824875
  • [6] Zhao F, Tian Z, Zeng Y. Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method. IEEE Transactions on Reliability 2013; 62 (1): 146-159. doi: 10.1109/TR.2013.2241216
  • [7] Scanlon P, Kavanagh DF, Boland FM. Residual life prediction of rotating machines using acoustic noise signals. IEEE Transactions on Instrumentation and Measurement 2013; 62 (1): 95-108. doi: 10.1109/TIM.2012.2212508
  • [8] Gao Z, Cecati C, Ding SX. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics 2015; 62 (6): 3757-3767. doi: 10.1109/TIE.2015.2417501
  • [9] Schautzgy J, Ivanov Y, Kroger B, Wilde J. Durability studies on vibration-loaded electrical contact systems subjected to tribological stress. Materials Testing 2019; 61 (2): 105-110.
  • [10] Day MJ. Condition Monitoring of Hydraulic System. Handbook of Condition Monitoring. Oxford, UK: Spectro Scientific, 1996.
  • [11] Hong JH, Day M. Energy efficiency & sustainability the cleanliness management role of components and system in automotive and hydraulics. Journal of Drive and Control 2012; 9 (4): 19-25. doi: 10.7839/ksfc.2012.9.4.019
  • [12] Kattelus J, Miettinen J, Lehtovaara A. Detection of gear pitting failure progression with on-line particle monitoring. Tribology International 2018; 118: 458-464. doi: 10.1016/j.triboint.2017.02.045
  • [13] Hong JH, Day M. Monitoring of cleanliness level in hydraulic systems: obtaining reliable on-line data. Journal of Drive and Control 2012; 9 (2): 28-38. doi: 10.7839/ksfc.2012.9.2.028
  • [14] Lu L, Wu X, Ji Z, Xiong Z, Wang M. Optimization of the optical particle counter for online particle measurement in high-pressure gas. Applied Optics 2019; 58 (2): 308-316. doi: 10.1364/AO.58.000308
  • [15] Michael PW, Wanke TS, McCambridge MA. Additive and base oil effects in automatic particle counters. Journal of ASTM International 2007; 4 (4): 1-7. doi: 10.1520/JAI100941
  • [16] Chenghu Z, Haiyan W, Dexing S. Design principle of hydraulic and continuous filter regeneration equipment. In: 2011 Third International Conference on Measuring Technology and Mechatronics Automation. pp. 1022-1025. doi: 10.1109/ICMTMA.2011.256
  • [17] ISO. ISO 11171: Hydraulic Fluid Power Calibration of Automatic Particle Counters for Liquids. Geneva, Switzerland: International Standards Organization, 2010.
  • [18] Khosravy M, Asharif MR, Yamashita K. A PDF-matched short-term linear predictability approach to blind source separation. International Journal of Innovative Computing, Information and Control 2009; 5 (11): 3677-3690.
  • [19] Khosravy M, Alsharif MR, Yamashita K. A PDF-matched modification to Stone’s measure of predictability for blind source separation. In: International Symposium on Neural Networks; 2009. pp. 219-228. doi: 10.1007/978-3-642-01507-6_26
  • [20] Khosravy M, Asharif MR, Yamashita K. A theoretical discussion on the foundation of Stone’s blind source separation. Signal, Image and Video Processing 2011; 5 (3): 379-388. doi: 10.1007/s11760-010-0161-0
  • [21] Khosravy M, Asharif M, Yamashita K. A probabilistic short-length linear predictability approach to blind source separation. In: 23rd International Technical Conference on Circuits/Systems, Computers and Communications; Yamaguchi, Japan; 2008. pp. 381-384.
  • [22] Khosravy M, Alsharif MR, Yamashita K. An efficient ICA based approach to multiuser detection in MIMO OFDM systems. Multi-Carrier Systems & Solutions 2009; 41: 47-56. doi: 10.1007/978-90-481-2530-2_5
  • [23] Khosravy M, Gupta N, Marina N, Asharif MR, Asharif F et al. Blind components processing a novel approach to array signal processing: a research orientation. In: 2015 International Conference on Intelligent Informatics and Biomedical Sciences; Okinawa, Japan; 2015. pp. 20-26. doi: 10.1109/ICIIBMS.2015.7439482
  • [24] Gutierrez CE, Alsharif MR, Cuiwei H, Khosravy M, Villa R et al. Uncover news dynamic by principal component analysis. ICIC Express Letters 2013; 7 (4): 1245-1250.
  • [25] ISO. ISO 4406: Hydraulic Fluid Power - Fluids - Method for Coding Level of Contamination by Solid Particles. Geneva, Switzerland: International Standards Organization, 1999.
  • [26] Sedaaghi MH, Khosravi M. Morphological ECG signal preprocessing with more efficient baseline drift removal. In Proceedings of the 7th IASTED International Conference; Calgary, Canada; 2003. pp. 205-209.
  • [27] Khosravy M, Asharif MR, Sedaaghi MH. Morphological adult and fetal ECG preprocessing: employing mediated morphology. IEICE Technical Reports 2008; 107 (461): 363-369.
  • [28] Khosravi M, Sedaaghi MH. Impulsive noise suppression of electrocardiogram signals with mediated morphological filters. In: 11th Iranian Conference on Biomedical Engineering; Tehran, Iran; 2004. pp. 207-212.
  • [29] Sedaaghi MH, Daj R, Khosravi M. Mediated morphological filters. In: Proceedings of the 2001 International Conference on Image Processing; Thessaloniki, Greece; 2001. pp.692-695. doi: 10.1109/ICIP.2001.958213
  • [30] Khosravy M, Asharif MR, Sedaaghi MH. Medical image noise suppression: using mediated morphology. IEICE Technical Reports 2008; 107 (461): 265-270.
  • [31] Shizgal B. Spectral Methods in Chemistry and Physics: Applications to Kinetic Theory. Dordrecht, the Netherlands: Springer, 2015.
  • [32] Efron B. Curvature and inference for maximum likelihood estimates. Annals of Statistics 2018; 46 (4): 1664-1692.
  • [33] Capon J. Maximum-likelihood spectral estimation. In: Hayking S (editor). Nonlinear Methods of Spectral Analysis. Berlin, Germany: Springer, 1979, pp. 155-179.
  • [34] Cesari A, Reiber S, Bussi G. Using the maximum entropy principle to combine simulations and solution experiments. Computation 2018; 6 (1): 15. doi: 10.3390/computation6010015
  • [35] Burg JP. The relationship between maximum entropy spectra and maximum likelihood spectra. Geophysics 1972; 37 (2): 375-376. doi: 10.1190/1.1440265
  • [36] Kagalenko M. Modified Pisarenko spectrum for frequency analysis. In: 2018 7th Mediterranean Conference on Embedded Computing; Budva, Montenegro; 2018. pp. 1-4. doi: 10.1109/MECO.2018.8406086
  • [37] Pisarenko VF. The retrieval of harmonics from a covariance function. Geophysical Journal International 1973; 33 (3): 347-366. doi: 10.1111/j.1365-246X.1973.tb03424.x
  • [38] Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 1986; 34 (3): 276-280. doi: 10.1109/TAP.1986.1143830
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK