Web personalization issues in big data and Semantic Web: challenges and opportunities
Web personalization issues in big data and Semantic Web: challenges and opportunities
Web personalization is a process that utilizes a set of methods, techniques, and actions for adapting the linkingstructure of an information space or its content or both to user interaction preferences. The aim of personalization is toenhance the user experience by retrieving relevant resources and presenting them in a meaningful fashion. The advent ofbig data introduced new challenges that locate user modeling and personalization community in a new research setting.In this paper, we introduce the research challenges related to Web personalization analyzed in the context of big dataand the Semantic Web. This paper also introduces some models and approaches that can bridge the gap between thetwo. Future challenges and opportunities related to Web personalization, analyzed from the big data and Semantic Webperspective, are also presented. The research challenges outlined in this paper involve the scrutability of user models inpersonalization, generic personalization, meta-personalization, open corpus personalization, and semantic data modeling.
___
- [1] Brusilovsky P. Methods and techniques of adaptive hypermedia. Journal of User Modeling and User-Adapted
Interaction 1996; 6 (2-3): 87-129.
- [2] Brusilovsky P. Methods and techniques of adaptive hypermedia. In: Brusilovsky P, Kobsa A, Vassileva J (editors).
Adaptive Hypertext and Hypermedia. Berlin, Germany: Springer, 1998. pp. 1-43. doi: 10.1007/978-94-017-0617-9_1
- [3] Knutov E, Bra PD, Pechenizkiy M. AH 12 years later: a comprehensive survey of adaptive hypermedia methods
and techniques. New Review of Hypermedia and Multimedia 2009; 15 (1): 5-38. doi: 10.1080/13614560902801608
- [4] Bra PD, Houben GJ, Kornatzky Y. An extensible data model for hyperdocuments. In: ACM Conference on
Hypertext; New York, NY, USA; 1992. pp. 222-231.
- [5] Bra PD, Calvi L. AHA! An open adaptive hypermedia architecture. New Review of Hypermedia and Multimedia
1998; 4 (1): 115-139. doi: 10.1080/13614569808914698
- [6] Koch N, Wirsing M. The Munich reference model for adaptive hypermedia applications. In: Adaptive Hypermedia
and Adaptive Web-Based Systems Conference; London, UK; 2002. pp. 213-222.
- [7] Ohene-Djan J, Fernandes A. Modelling personalisable hypermedia: The Goldsmiths model. New Review of Hypermedia and Multimedia 2002; 8 (1): 99-137. doi: 10.1080/13614560208914738
- [8] Cristea A, Calvi L. The three layers of adaptation granularity. In: International Conference on User Modeling;
Johnstown, PA, USA; 2003. pp. 4-14.
- [9] Raufi B. Adaptive Web-Based Systems: From Conception to Implementation. Saarbrucken, Germany: Lambert
Academic Publishing, 2013.
- [10] Bra PD, Smits D, Stash N. The design of AHA! In: Hypertext and Hypermedia Conference; New York, NY, USA;
2006. pp. 133-134.
- [11] Henze N. Adaptive hyperbooks: adaptation for project-based learning resources. PhD, University of Hannover,
Hannover, Germany, 2000.
- [12] Conlan O, Hockemeyer C, Wade V, Albert D. Metadata driven approaches to facilitate adaptivity in personalized
eLearning systems. Journal of Information and Systems in Education 2002; 1: 38-45.
- [13] Brusilovsky P, Schwarz E, Weber G. ELM-ART: An intelligent tutoring system on world wide web. In: Intelligent
Tutoring Systems Conference; Montreal, Canada; 1996. pp. 261-269.
- [14] Eklund J, Brusilovsky P. Interbook: an adaptive tutoring system. UniServe Science News 1999; 12 (3): 8-13.
- [15] Carro RM, Pulido E, Rodriguez P. TANGOW: Task-based adaptive learner guidance on the WWW. In: Adaptive
Systems and User Modeling on the Web, Second Workshop; Toronto, Canada; 1999. pp. 49-57.
- [16] Balik M, Jelinek I. General architecture of adaptive and adaptable information systems. In: Enterprise Information
Systems Conference; Madeira, Portugal; 2007. pp. 29-34.
- [17] Martin E, Carro RM, Rodriguez P. A mechanism to support context-based adaptation in m-learning. In: First
European Conference on Technology Enhanced Learning; Crete, Greece; 2006. pp. 302-315.
- [18] Srinivasa S, Bhatnagar V. Big data analytics. In: Big Data Analytics BDA Conference; New Delhi, India; 2012. pp.
24-26.
- [19] Yasir A, Swamy MK, Reddy PK. Exploiting schema and documentation for summarizing relational databases. In:
Big Data Analytics Conference; New Delhi, India; 2012. pp. 77-90.
- [20] Nambiar U, Faruquie T, Kumar S, Morstatter F, Liu H. Faceted browsing over social media. In: Big Data Analytics
Conference; New Delhi, India; 2012. pp. 91-100.
- [21] Gupta A, Kathuria M, Singh A, Sachdeva A, Bhati S. Analog textual entailment and spectral clustering (atesc)
based summarization. In: Big Data Analytics Conference; New Delhi, India; 2012. pp. 101-110.
- [22] Lika B, Kolomvatsos K, Hadjiefthymiades S. Facing the cold start problem in recommender systems. Journal of
Expert Systems with Applications 2014; 41 (4): 2065-2073. doi: 10.1016/j.eswa.2013.09.005
- [23] Roes I, Stash N, Wang Y, Aroyo L. A personalized walk through the museum: the chip interactive tour guide. In:
Human Factors in Computing Systems Extended Abstracts (CHI’09); Boston, MA, USA; 2009. pp. 3317-3322.
- [24] Bizer C, Heath T, Berners-Lee T. Linked data-the story so far. International Journal on Semantic Web and
Information Systems 2009; 5: 1-22. doi: 10.4018/978-1-60960-593-3.ch008
- [25] Raufi B, Ismaili F, Ajdari J, Ferati M, Zenuni X. Semantic resource adaptation based on generic ontology models.
In: ICSOFT-PT’14 Software Paradigm Trends Conference; Vienna, Austria; 2014. pp. 103-108.
- [26] Knutov E. Generic adaptation framework for unifying adaptive web-based systems. PhD, Eindhoven University of
Technology, Eindhoven, the Netherlands, 2012.
- [27] Belcadhi LC. Personalized feedback for self assessment in lifelong learning environments based on semantic web.
Journal of Computers in Human Behavior 2016; 55: 562-570. doi: 10.1016/j.chb.2015.07.042
- [28] Ouf S, Ellatif MA, Salama SE, Helmy YA. A proposed paradigm for smart learning environment based on semantic
web. Journal of Computers in Human Behavior 2017; 72: 796-818. doi: 10.1016/j.chb.2016.08.030
- [29] Khalili A, Loizou A, Harmelen FV. Adaptive linked data-driven web components: building flexible and reusable
semantic web interfaces. In: International Semantic Web Conference; Kobe, Japan; 2016. pp. 677-692.
- [30] Plumbaum T. User modeling in the social semantic web. PhD, TU Berlin, Berlin, Germany, 2015.
- [31] Dolog P, Nejdl W. Semantic web technologies for the adaptive web. Lecture Notes in Computer Science 2007; 4321:
697-719. doi: 10.1007/978-3-540-72079-9_23
- [32] Jajaga E, Ahmedi L, Ahmedi F. StreamJess: A stream reasoning framework for water quality monitoring. Journal
of Metadata, Semantics and Ontologies 2016; (11) 4: 207-220. doi: 10.1504/IJMSO.2016.083507
- [33] Margara A, Urbani J, Harmelen FV, Bal H. Streaming the web: reasoning over dynamic data. Journal of Web
Semantics 2014; 25: 24-44. doi: 10.1016/j.websem.2014.02.001
- [34] Raufi B, Ismaili F, Ajdari J, Zenuni X. Knowledgebase harvesting for user-adaptive systems through focused crawling
and Semantic Web. In: CompSysTech’16 Computer Systems and Technologies Conference; Palermo, Italy; June
2016. pp. 323-330.
- [35] Brusilovsky P. Adaptive navigation support for open corpus hypermedia systems. In: Adaptive Hypermedia and
Adaptive Web-Based Systems Conference; Hannover, Germany; 2008; pp. 6-8
- [36] Sosnovsky S, Hsiao IH, Brusilovsky P. Adaptation “in the wild”: ontology-based personalization of open-corpus
learning material. In: Technology Enhanced Learning Conference; Saarbrücken, Germany; 2012. pp. 425-431.
- [37] Bowman SR, Angeli G, Potts C, Manning CD. A large annotated corpus for learning natural language inference.
In: Empirical Methods for Natural Language Processing Conference; Lisbon, Portugal; 2015. pp. 632-642
- [38] Schmitz M, Bart R, Soderland S, Etzioni O. Open language learning for information extraction. In: Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language Learning; Jeju Island,
Korea; 2012. pp. 523-534.
- [39] Bizer C, Boncz P, Brodie ML, Erling O. The meaningful use of big data: four perspectives–four challenges. ACM
Sigmod Record 2011; 40 (4): 56-60. doi: 10.1145/2094114.2094129
- [40] Bobadilla J, Ortega F, Hernando A, Bernal J. A collaborative filtering approach to mitigate the new user cold start
problem. Journal of Knowledge-Based Systems 2012; 26: 225-238. doi: 10.1016/j.knosys.2011.07.021
- [41] Agarwal V, Bharadwaj KK. A collaborative filtering framework for friends recommendation in social networks based
on interaction intensity and adaptive user similarity. Journal of Social Network Analysis and Mining 2013; 3 (3):
359-379.
- [42] Eirinaki M, Vazirgiannis M. Web mining for web personalization. ACM Transactions on Internet Technology 2003;
3 (1): 1-27. doi: 10.1145/643477.643478
- [43] Barla M, Tvarožek M, Bieliková M. Rule-based user characteristics acquisition from logs with semantics for
personalized web-based systems. Journal of Computing and Informatics 2009; 28 (4): 399-428.
- [44] Kaur N, Aggarwal H. Query based approach for referrer field analysis of log data using web mining techniques for
ontology improvement. International Journal of Information Technology 2018; 10 (1): 99-110.
- [45] Ghorab MR, Zhou D, O’Connor A, Wade V. Personalised information retrieval: survey and classification. Journal
of User Modeling and User-Adapted Interaction 2013; 23 (4): 381-443.
- [46] Zhang Y, Lai G, Zhang M, Zhang Y, Liu Y et al. Explicit factor models for explainable recommendation based on
phrase-level sentiment analysis. In: ACM SIGIR Conference on Research & Development in Information Retrieval;
Gold Coast, Australia; 2014. pp. 83-92.
- [47] Hwang GJ. Definition, framework and research issues of smart learning environments-a context-aware ubiquitous
learning perspective. Smart Learning Environments 2014; 1 (4): 1-4.
- [48] Sampson DG, Zervas P. Context-aware adaptive and personalized mobile learning systems. In: Sampson DG, Isaias
P, Ifenthaler D, Spector JM (editors). Ubiquitous and Mobile Learning in the Digital Age. New York, NY, USA:
Springer, 2013. pp. 3-17.
- [49] Yang TC, Hwang GJ, Yang SJH. Development of an adaptive learning system with multiple perspectives based on
students’ learning styles and cognitive styles. Journal of Educational Technology & Society 2013; 16 (4): 185-200.
- [50] Adomavicius G, Tuzhilin A. Context-aware recommender systems. In: Ricci F, Rokach L, Shapira B (editors).
Recommender Systems Handbook. Boston, MA, USA: Springer, 2015. pp. 191-226.
- [51] Verbert K, Manouselis N, Ochoa X, Wolpers M, Drachsler H et al. Context-aware recommender systems for learning:
a survey and future challenges. IEEE Transactions on Learning Technologies 2012; 5 (4): 318-335.
- [52] Raufi B, Ismaili F, Zenuni X. Modeling a complete ontology for adaptive web based systems using a top-down five
layer framework. In: Information Technology Interfaces Conference; Dubrovnik, Croatia; 2009. pp. 511-518.
- [53] Bra PD, Brusilovsky P, Houben GJ. Adaptive hypermedia: from systems to framework. ACM Computing Surveys
1999; 31 (4): 12. doi: 10.1145/345966.345996
- [54] Kay J. Stereotypes, student models and scrutability. In: Intelligent Tutoring Systems Conference; Montreal, Canada;
2000. pp. 19–50.
- [55] Bra PD. Challenges in user modeling and personalization. IEEE Intelligent Systems 2017; 32 (5): 76-80.
- [56] Matentzoglu N, Vigo M, Jay C, Stevens R. Inference inspector: improving the verification of ontology authoring
actions. Journal of Web Semantics 2018; 49: 1-15.
- [57] Masthoff J. Group Recommender Systems: Combining Individual Models. In: Ricci F, Rokach L, Shapira B, Kantor
P (editors). Recommender Systems Handbook. Boston, MA, USA: Springer, 2011. pp. 677-702.
- [58] Arroyo S, Ding Y, Lara R, Stollberg M, Fensel D. Semantic web languages. strengths and weakness. In: Applied
Computing (IADIS04) Conference; Lisbon, Portugal; 2004. pp. 23-26.
- [59] Suchanek FM, Kasneci G, Weikum G. Yago: A core of semantic knowledge. In: World Wide Web Conference;
Alberta, Canada; 2007. pp. 697-706.