A multiple sensor fusion based drift compensation algorithm for mecanum wheeled mobile robots

A multiple sensor fusion based drift compensation algorithm for mecanum wheeled mobile robots

This paper investigates a multiple sensor fusion based drift compensation technique for a mecanum wheeled mobile robot platform. The mobile robot is equipped with high-precision encoders integrated to the wheels and four accelerometers placed on its chassis. The proposed algorithm combines the information from the encoders and the acceleration sensors to estimate the total drift in the acceleration dimension. The inner loop controller is designed utilizing a disturbance-observer-based acceleration control structure which is blind against the slipping motion of the wheels. The estimated drift acceleration from the sensor fusion is then mapped back to the joint space of the robot and used as additional compensation over the existing controllers. The proposed algorithm is tested on a series of experiments. The results of the experiments are also compared with those of a recent study in order to provide a benchmark evaluation. The enhanced tracking performance yielding towards smaller error magnitudes in the experiments illustrate the efficacy and success of the proposed control architecture in attenuating the positioning drift of mecanum wheeled robots.

___

  • 1] Cho BS, Moon WS, Seo WJ, Baek KR. A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding. Journal of Mechanical Science and Technology 2011; 25 (11): 2907-2917. doi: 10.1007/s12206-011-0805-1
  • [2] Blyth WA, Barr RWB, Ferdinando RYB. A reduced actuation mecanum wheel platform for pipe inspection. In: IEEE International Conference on Advanced Intelligent Mechatronics (AIM); Banff, Canada; 2016. pp. 419-424.
  • [3] Kang JW, Kim BS, Chung MJ. Development of omni-directional mobile robots with mecanum wheels assisting the disabled in a factory environment. In: IEEE International Conference on Control, Automation and Systems (ICCAS); Seoul, South Korea; 2008. pp. 2070-2075
  • [4] Adăscăliţei F, Doroftei I. Practical applications for mobile robots based on mecanum wheels-a systematic survey. The Romanian Review Precision Mechanics, Optics and Mechatronics 2011; 40: 21-29
  • [5] Han KL, Choi OK, Hwang I, Lee JS, Choi S. Design and control of omni-directional mobile robot for mobile haptic interface. In: IEEE International Conference on Control, Automation and Systems (ICCAS); Seoul, South Korea; 2008. pp. 1290-1295
  • [6] Qian J, Zi B, Wang D, Ma Y, Zhang, D. The design and development of an omni-directional mobile robot oriented to an intelligent manufacturing system. Sensors 2017; 17 (9); 2073-2087. doi: 10.3390/s17092073
  • [7] Galicki M. Optimal cascaded control of mobile manipulators. Nonlinear Dynamics 2019; 96 (2): 1367-1389. doi: 10.1007/s11071-019-04860-7
  • [8] Bae JJ, Kang N. Design optimization of a mecanum wheel to reduce vertical vibrations by the consideration of equivalent stiffness. Shock and Vibration 2016; 2016: 1-8. doi: 10.1155/2016/5892784
  • [9] Alakshendra V, Chiddarwar SS. A robust adaptive control of mecanum wheel mobile robot: simulation and experimental validation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Daejeon, Korea; 2016. pp. 5606-5611
  • [10] Chu B. Position compensation algorithm for omnidirectional mobile robots and its experimental evaluation. Interna- tional Journal of Precision Engineering and Manufacturing 2017; 18 (12); 1755-1762. doi: 10.1007/s12541-017-0204-3
  • [11] Killpack M, Deyle T, Anderson C, Kemp CC. Visual odometry and control for an omnidirectional mobile robot with a downward-facing camera. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Taipei, Taiwan; 2010. pp. 139-146
  • [12] Julliere M, Place H, Bazin E, Radenac JF. A relative localisation system of a mobile robot. Journal of Intelligent and Robotic Systems 1988; 1 (3): 243-257. doi: 10.1007/BF00238768
  • [13] Hong S. Park S. Minimal-drift heading measurement using a MEMS gyro for indoor mobile robots. Sensors 2008; 8 (11): 7287-7299. doi: 10.3390/s8117287
  • [14] Coito F. Eleutério A. Valtchev S. Coito F. Tracking a mobile robot position using vision and inertial sensor. In: Doctoral Conference on Computing, Electrical and Industrial Systems; Costa de Caparica, Portugal; 2014. pp. 201-208
  • [15] Matía F. Jiménez A. Multisensor fusion: an autonomous mobile robot. Journal of Intelligent and Robotic Systems 1998; 22 (2): 129-141. doi: 10.1023/A:1007928600410
  • [16] Srinivasan K, Gu J. Tracking a mobile robot position using vision and inertial sensor. In: Canadian Conference on Electrical and Computer Engineering (CCECE); Vancouver, Canada; 2007. pp. 1207-1210
  • [17] Wu C, Tsai C. Localization of an autonomous mobile robot based on ultrasonic sensory information. Journal of Intelligent and Robotic Systems 2001; 30 (3): 267-277. doi: 10.1023/A:1008154910876
  • [18] Kim J, Woo S, Kim J, Do J, Kim S et al. Inertial navigation system for an automatic guided vehicle with mecanum wheels. International Journal of Precision Engineering and Manufacturing 2012; 13 (3): 379-386. doi: 10.1007/s12541-012-0048-9
  • [19] Siravuru A, Shah SV, Krishna KM. An optimal wheel-torque control on a compliant modular robot for wheel-slip minimization. Robotica 2017; 35 (2): 463-482. doi: 10.1017/S0263574715000685
  • [20] Lee IS, Kim JY, Lee JH, Kim JM, Kim SS. Kalman filter-based sensor fusion for improving localization of AGV. Advanced Materials Research 2012; 488: 1818-1822. doi: 10.4028/www.scientific.net/AMR.488-489.1818
  • [21] Sahoo SR, Chiddarwar SS, Alakshendra V. Intuitive dynamic modeling and flatness-based nonlinear control of a mobile robot. Simulation 2018; 94 (9): 797-820. doi: 10.1177/0037549717741192
  • [22] Baran EA, Uzunovic T, Sabanovic A. Performance improvement of bilateral control systems using derivative of force. Robotica 20118; 36 (11): 1627-1640. doi: 10.1017/S0263574718000607
  • [23] Zhang J, Liu X, Xia Y, Zuo Z, Wang Y. Disturbance observer-based integral sliding-mode control for sys- tems with mismatched disturbances. IEEE Transactions on Industrial Electronics 2016; 63 (11): 7040-7048. doi: 10.1109/TIE.2016.2583999
  • [24] Xu B, Shi Z, Yang C. Composite fuzzy control of a class of uncertain nonlinear systems with disturbance observer. Nonlinear Dynamics 2015; 80 (1-2): 341-351. doi: 10.1007/s11071-014-1872-5
  • [25] Ohnishi K, Shibata M, Murakami T. Motion control for advanced mechatronics. IEEE/ASME Transactions on Mechatronics 1996; 1 (1): 56-67. doi: 10.1109/3516.491410
  • [26] Sariyildiz E, Ohnishi, K. Stability and robustness of disturbance-observer-based motion control systems. IEEE Transactions on Industrial Electronics 2015; 62 (1): 414-422. doi: 10.1109/TIE.2014.2327009
  • [27] Yuan Z, Tian Y, Yin Y, Wang S, Liu J et al. Trajectory tracking control of a four mecanum wheeled mobile platform: an extended state observer-based sliding mode approach. IET Control Theory & Applications 2020; 14 (3): 415-426. doi: 10.1049/iet-cta.2018.6127