Impact of image segmentation techniques on celiac disease classification using scale invariant texture descriptors for standard flexible endoscopic systems

Impact of image segmentation techniques on celiac disease classification using scale invariant texture descriptors for standard flexible endoscopic systems

Celiac disease (CD) is quite common and is a proximal small bowel disease that develops as a permanent intolerance to gluten and other cereal proteins in cereals. It is considered as one of the most difficult diseases to diagnose. Histopathological evidence of small bowel biopsies taken during endoscopy remains the gold standard for diagnosis. Therefore, computer-aided detection (CAD) systems in endoscopy are a newly emerging technology to enhance the diagnostic accuracy of the disease and to save time and manpower. For this reason, a hybrid machine learning methods have been applied for the CAD of celiac disease. Firstly, a context-based optimal multilevel thresholding technique was employed to segment the images. Afterward, images were decomposed into subbands with discrete wavelet transform (DWT), and the distinctive features were extracted with scale invariant texture recognition. Classification accuracy, sensitivity and specificity ratio are 94.79%, 94.29%, and 95.08%, respectively. The results of the proposed models are compared with the results of other state-of-the-art methods such as a convolutional neural network (CNN) and higher order spectral (HOS) analysis. The results showed that the proposed hybrid approaches are accurate, fast, and robust.

___

  • 1] Gujral N, Freeman HJ, Thomson AB. Celiac disease: Prevalence, diagnosis, pathogenesis and treatment. World Journal of Gastroenterology, 2012;18(42):6036. doi:10.3748/wjg.v18.i42.6036
  • [2] Zohuri B. Dimensional analysis. In: Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists. Cham: Springer International Publishing; 2015:1-92. doi:10.1007/978-3-319-13476-5_1
  • [3] Zhang J, Tan T. Brief review of invariant texture analysis methods. Pattern Recognition. 2002;35(3):735-747. doi:10.1016/S0031-3203(01)00074-7
  • [4] Hegenbart S, Uhl A, Vécsei A. Impact of Histogram Subset Selection on Classification using Multi-scale LBP-Operators. In: Springer. Berlin, Heidelberg: Springer. 2011:359-363. doi:10.1007/978-3-642-19335-4_74
  • [5] Uhl A, Vécsei A, Wimmer G. Complex Wavelet Transform Variants in a Scale Invariant Classification of Celiac Disease. In: Springer. Berlin, Heidelberg: Springer. 2011:742-749. doi:10.1007/978-3-642-21257-4_92
  • [6] Hegenbart S, Uhl A, Vécsei A, Wimmer G. Scale invariant texture descriptors for classifying celiac disease. Medical Image Analysis. 2013;17(4):458-474. doi:10.1016/J.MEDIA.2013.02.001
  • [7] Hegenbart S, Uhl A. A scale- and orientation-adaptive extension of Local Binary Patterns for texture classification. Pattern Recognition. 2015;48(8):2633-2644. doi:10.1016/j.patcog.2015.02.024
  • [8] Hegenbart S, Uhl A, Vécsei A. Survey on computer aided decision support for diagnosis of celiac disease. Computers in Biology and Medicine. 2015;65:348-358. doi:10.1016/j.compbiomed.2015.02.00
  • 9] Hegenbart S, Uhl A, Vecsei A. Impact of endoscopic image degradations on LBP based features using one-class SVM for classification of celiac disease - IEEE Conference Publication. In: 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA); Dubrovnik, Croatia.
  • [10] Boschetto D, Mirzaei H, Leong RWL, Grisan E. Superpixel-based automatic segmentation of villi in confocal endomi- croscopy. In: 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE; 2016;168-171. doi:10.1109/BHI.2016.7455861
  • [11] Patil DD, Deore SG, Bhusawal S. Medical image segmentation: a review. International Journal of Computer Science and Mobile Computing. 2013;2(1):22-27.
  • [12] Oliva D, Hinojosa S, Elaziz MA, Ortega-Sánchez N. Context based image segmentation using antlion optimization and sine cosine algorithm. Multimedia Tools and Applications. 2018;77(19):25761-25797. doi:10.1007/s11042-018-5815-x
  • [13] Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics. 1979;9(1):62-66. doi:10.1109/TSMC.1979.4310076
  • [14] Kapur JN, Sahoo PK, Wong AKC. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing. 1985;29(3):273-285. doi:10.1016/0734-189X(85)90125-2
  • [15] Ghosh S, Bruzzone L, Patra S, Bovolo F, Ghosh A. A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks. IEEE Transactions on Geoscience and Remote Sensing. 2007;45(3):778-789. doi:10.1109/TGRS.2006.888861
  • [16] Patra S, Gautam R, Singla A. A novel context sensitive multilevel thresholding for image segmentation. Applied Soft Computing. 2014;23:122-127. doi:10.1016/J.ASOC.2014.06.016
  • [17] Kandhway P, Bhandari AK. Spatial context-based optimal multilevel energy curve thresholding for image segmentation using soft computing techniques. Neural Computing and Applications. 2019;32(13), 8901–8937. doi:10.1007/s00521-019-04381-9
  • [18] Yang XS, Deb S. Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings. 2009:210-214. doi:10.1109/NABIC.2009.5393690
  • [19] Pare S, Kumar A, Bajaj V, Singh GK. A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve. Applied Soft Computing. 2016;47:76-102. doi:10.1016/J.ASOC.2016.05.040
  • [20] Gadermayr M, Liedlgruber M, Uhl A, Vécsei A. Evaluation of different distortion correction methods and interpolation techniques for an automated classification of celiac disease. Computer Methods and Programs in Biomedicine. 2013;112(3):694- 712. doi:10.1016/J.CMPB.2013.07.001
  • [21] Vécsei A, Amann G, Hegenbart S, Liedlgruber M, Uhl A. Automated Marsh-like classification of celiac disease in children using local texture operators. Computers in Biology and Medicine. 2011;41(6):313-325. doi:10.1016/j.compbiomed.2011.03.009
  • [22] Vecsei A, Fuhrmann T, Uhl A. Towards automated diagnosis of celiac disease by computer-assisted classification of duodenal imagery. In: 4th IET International Conference on Advances in Medical, Signal and Information Processing (MEDSIP 2008). IEE; 2008:P21-P21. doi:10.1049/cp:20080465
  • [23] Hegenbart S, Kwitt R, Liedlgruber M, Uhl A, Vecsei A. Impact of duodenal image capturing techniques and duodenal regions on the performance of automated diagnosis of celiac disease. In: 2009 Proceedings of 6th International Symposium on Image and Signal Processing and Analysis. IEEE; 2009:718-723. doi:10.1109/ISPA.2009.5297637
  • [24] Hafner M, Gangl A, Liedlgruber M, Uhl A, Vecsei A, Wrba F. Combining Gaussian Markov random fields with the discrete- wavelet transform for endoscopic image classification. In: 2009 16th International Conference on Digital Signal Processing. IEEE; 2009:1-6. doi:10.1109/ICDSP.2009.5201226
  • [25] Kwitt R, Uhl A. Modeling the marginal distributions of complex wavelet coefficient magnitudes for the classifica- tion of zoom-endoscopy images. In: 2007 IEEE 11th International Conference on Computer Vision. IEEE; 2007:1-8. doi:10.1109/ICCV.2007.4409170
  • [26] Gadermayr M, Hegenbart S, Kwitt R, Uhl A, Vecsei A. Narrow band imaging versus white-light: What is best for computer- assisted diagnosis of celiac disease? In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE; 2016:355-359. doi:10.1109/ISBI.2016.7493282
  • [27] Wimmer G, Uhl A, Vecsei A. Evaluation of domain specific data augmentation techniques for the classification of celiac disease using endoscopic imagery. In: 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP). IEEE; 2017:1-6. doi:10.1109/MMSP.2017.8122221
  • [28] Koh JEW, Hagiwara Y, Oh SL, Tan JH, Ciaccio EJ et al. Automated diagnosis of celiac disease using DWT and nonlinear features with video capsule endoscopy images. Future Generation Computer Systems. 2019;90:86-93. doi:10.1016/J.FUTURE.2018.07.044
  • [29] Mallat SG. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1989;11(7):674-693. doi:10.1109/34.192463
  • [30] Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distribu- tions. Pattern Recognition. 1996;29(1):51-59. doi:10.1016/0031-3203(95)00067-4
  • [31] Hegenbart S, Maimone S, Uhl A, Vécsei A, Wimmer G. Customised frequency pre-ltering in a local binary pattern-based classication of gastrointestinal images. In: Greenspan H., Müller H., Syeda-Mahmood T. (editors). Medical Content-Based Retrieval for Clinical Decision Support. MCBR-CDS 2012. Lecture Notes in Computer Science, vol 7723. Heidelberg, Berlin, Germany: Springer, 2013, pp. 99-109. doi:10.1007/978-3-642-36678-9_10
  • [32] Gadermayr M, Uhl A, Vécsei A. Feature Extraction with Intrinsic Distortion Correction in Celiac Disease Imagery: No Need for Rasterization. In: Springer, Cham; 2014:196-204. doi:10.1007/978-3-319-05530-5_19
  • [33] Gadermayr M, Uhl A, Vécsei A. (2014) Is a Precise Distortion Estimation Needed for Computer Aided Celiac Disease Diagnosis?. In: Elmoataz A., Lezoray O., Nouboud F., Mammass D. (eds) Image and Signal Processing. ICISP 2014. Lecture Notes in Computer Science, vol 8509. Springer, Cham. doi:10.1007/978-3-319-07998-1_71
  • [34] Gadermayr M, Uhl A, Vécsei A. (2014) Degradation Adaptive Texture Classification: A Case Study in Celiac Disease Diagnosis Brings New Insight. In: Campilho A, Kamel M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science, vol 8815. Springer, Cham. https://doi.org/10.1007/978-3-319-11755-3_30
  • [35] Grisan E, Mirzaei H, Leong R. Computer-assisted automated image recognition of celiac disease using confocal endomi- croscopy. In: 2014 IEEE 11th 29 International Symposium on Biomedical Imaging (ISBI); Beijing, China; 2014. pp. 121-124. doi:10.1109/ISBI.2014.6867824
  • [36] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). Vol 1. IEEE; :886-893. doi:10.1109/CVPR.2005.177
  • [37] Gadermayr M, Liedlgruber M, Uhl A, Vécsei A. Shape Curvature Histogram: A Shape Feature for Celiac Disease Diagnosis. In: Springer. Springer, Cham; 2014:175-184. doi:10.1007/978-3-319-05530-5_17
  • [38] Gadermayr M, Uhl A, Vécsei A. Quality Based Information Fusion in Fully Automatized Celiac Disease Diagnosis. In: Springer, Cham; 2014:666-677. doi:10.1007/978-3-319-11752-2_55
  • [39] Gadermayr M, Kogler H, Karla M, Vecsei A, Uhl A, Merhof D. Incorporating human knowledge in automated celiac disease diagnosis. In: 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE; 2016:1-6. doi:10.1109/IPTA.2016.7821009
  • [40] Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding. 2008;110(3):346-359. doi:10.1016/J.CVIU.2007.09.014
  • [41] Gadermayr M, Kogler H, Karla M, Merhof D, Uhl A et al. Computer-aided texture analysis combined with ex- perts’ knowledge: Improving endoscopic celiac disease diagnosis. World Journal of Gastroenterology. 2016;22(31):7124. doi:10.3748/wjg.v22.i31.7124
  • [42] Kwitt R, Hegenbart S, Rasiwasia N, Vécsei A, Uhl A. Do We Need Annotation Experts? A Case Study in Celiac Disease Classification. In: Springer, Cham; 2014:454-461. doi:10.1007/978-3-319-10470-6_57
  • [43] Yang XS. Firefly Algorithms for Multimodal Optimization. In: Springer, Berlin, Heidelberg; 2009:169-178. doi:10.1007/978- 3-642-04944-6_14
  • [44] Goodarzi M, dos Santos Coelho L. Firefly as a novel swarm intelligence variable selection method in spectroscopy. Analytica Chimica Acta. 2014;852:20-27. doi:10.1016/J.ACA.2014.09.045
  • [45] Vedaldi A, Lenc K. MatConvNet: Convolutional neural networks for MATLAB. In: MM 2015 - Proceedings of the 2015 ACM Multimedia Conference. New York, New York, USA: Association for Computing Machinery, Inc; 2015:689-692. doi:10.1145/2733373.2807412
  • [46] Wimmer G, Hegenbart S, Vecsei A, Uhl A. Convolutional neural network architectures for the automated diagnosis of celiac disease. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 10170 LNCS. Springer Verlag; 2017:104-113. doi:10.1007/978-3-319-54057-3_10
  • [47] Zhou T, Han G, Li BN, Lin Z, Ciaccio EJ et al. Quantitative analysis of patients with celiac disease by video capsule endoscopy: A deep learning method. Computers in Biology and Medicine. 2017;85:1-6. doi:10.1016/J.COMPBIOMED.2017.03.031
  • [48] Wang X, Qian H, Ciaccio EJ, Lewis SK, Bhagat G et al. Celiac disease diagnosis from videocapsule endoscopy im- ages with residual learning and deep feature extraction. Computer Methods and Programs in Biomedicine. 2019:105236. doi:10.1016/J.CMPB.2019.105236
  • [49] Kavur AE, Gezer NS, Barış M, Baydar B, Yüksel U et al. Comparison of semi-automatic and deep learning-based auto- matic methods for liver segmentation in living liver transplant donors. Diagnostic Interval Radiology 2020; 26(1): 11-21. doi:10.5152/dir.2019.19025
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Analysis of shielding effectiveness by optimizing aperture dimensions of arectangular enclosure with genetic algorithmdimensions of arectangular enclosure with genetic algorithm

Sibel YENİKAYA, Sunay GÜLER

Dynamic issue queue capping for simultaneous multithreaded processors

Sercan SARI, Merve YILDIZ GÜNEY, Büşra KURU, Gürhan KÜÇÜK, İsa Ahmet GÜNEY

Analytical modeling and study on noise characteristics of rotor eccentric SPMSM with unequal magnetic poles structure

Pengpeng XIA, Shenbo YU, Rutong DOU, Fengchen ZHAI

Design of the fractional order internal model controller using the swarm intelligence techniques for the coupled tank system

Sateesh Kumar VAVILALA, Vinopraba THIRUMAVALAVAN, Radhakrishnan THOTA, Sivakumaran NATARAJAN

The nearest polyhedral convex conic regions for high-dimensional classification

Emre ÇİMEN, Gürkan ÖZTÜRK, Hakan ÇEVİKAL

Learning multiview deep features from skeletal sign language videos for recognition

Ashraf Ali SHAIK, Venkata Durga Prasad MAREEDU, Venkata Vijaya Kishore POLURIE

Maritime automatic target recognition for ground-based scanning radars by using sequential range profiles

Nevcihan DURU, Baki BATI

Development of majority vote ensemble feature selection algorithm augmented with rank allocation to enhance Turkish text categorization

Akın ÖZÇİFT, Emin BORANDAĞ, Yeşim KAYGUSUZ

Design of a compact wearable ultrawideband MIMO antenna with improved port isolation

Amit Baran DEY, Utkarsh BHATT, Wasim ARIF

An adaptive element division algorithm for accurate evaluation of singular and near singular integrals in 3D

Besim BARANOĞLU, Hakan BAYINDIR, Ali YAZICI