Zircon U-Pb geochronology, geochemistry, Sr-Nd isotopic compositions, and tectonomagmatic implications of Nay (NE Iran) postcollisional intrusives in the Sabzevar zone

Zircon U-Pb geochronology, geochemistry, Sr-Nd isotopic compositions, and tectonomagmatic implications of Nay (NE Iran) postcollisional intrusives in the Sabzevar zone

The mafic to felsic intrusive rocks of Nay (IRN) are located in the northeast of the central Iranian block. In this study, we presentnew major and trace element geochemistry, U-Pb zircon ages, and Sr-Nd isotopic data to discuss the origin of the IRN postcollisionalunits. The oldest units in the Nay area belong to Paleocene–early Eocene volcanic and pyroclastic series including basalt-andesite, latite,dacite, and tuff. These series are crosscut by subvolcanic and granitoid rocks with lithological composition varying from quartz gabbroto K-feldspar granite. The youngest igneous activity is represented by quartz monzodiorite dikes. Hornblende-biotite quartz monzonitefrom Nay granitoids was dated at 40 Ma (zircon U-Pb). The IRN rocks are metaluminous to peraluminous with high-K calc-alkalineand shoshonitic affinities. They display enrichment in light REEs [(La/Yb)N = 3.79–8.71] and LILEs (such as Ba, Th, Rb, U, and K), withdepletion in HFSEs (such as Nb, Zr, Y, and Ti). All rocks have negative Eu anomalies [(Eu/Eu*)N = 0.17–0.88] and relatively flat heavyREE patterns [(Gd/Yb)N = 1.12–1.69]. Granitoids have initial 87Sr/86Sr values from 0.7053 to 0.7061 and εNd values from –1.65 to –0.02calculated at 40 Ma. The geochemical composition of IRN rocks along with the low ISr and positive εNd values and mantle model ages of0.6–0.8 Ga indicate that two end-members, enriched mantle and a continental crust, were involved in the magma generation. We arguethat the Eocene IRN magmatism occurred as a postcollisional product by asthenospheric upwelling owing to the convective removal ofthe lithosphere during an extensional collapse of the central Iranian block.

___

  • Afsharharb A, Aghanabati A, Majdi B (1987). Geological Map of Mashhad, Scale 1:250000. Tehran, Iran: Geological Survey of Iran.
  • Agard P, Omrani, J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monie P, Meyer B, Wortel R (2011). Zagros orogeny: a subduction-dominated process. Geol Mag 148: 692-725.
  • Aghazadeh M, Castro A, Omran, NR, Emami MH, Moinvaziri H, Badrzadeh Z (2010). The gabbro (shoshonitic)–monzonite– granodiorite association of Khankandi pluton, Alborz Mountains. NW Iran. J Asian Earth Sci 38: 199-219.
  • Ahmadian J, Haschke M, McDonald I, Regelous M, Ghorbani MR, Emami MH, Murata M (2009). High magmatic flux during Alpine-Himalayan collision: Constraints from the Kal-e-Kafi complex, central Iran. Geol Soc Am Bull 121: 857-868.
  • Alaminia Z, Karimpour MH, Homam SM, Finger F (2013). The magmatic record in the Arghash region (northeast Iran) and tectonic implications. Int J Earth Sci 102: 1603-1625.
  • Alavi M (1996). Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. J Geodyn 21: 1-33.
  • Alavi M (2007). Structures of the Zagros fold-thrust belt in Iran. Am J Sci 307: 1064-1095.
  • Allegre CO, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J, Achache J, Schärer U, Marcoux J (1984). Structure and evolution of the Himalaya–Tibet orogenic belt. Nature 307: 17-22.
  • Allen MB, Armstrong HA (2008). Arabia–Eurasia collision and the forcing of midCenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 265: 52-58.
  • Almasi A (2016). Mineralization, petrogenesis and geochemicalgeophysical exploration in Uch-Palang-Sarsefidal. PhD, Ferdowsi University of Mashhad, Mashhad, Iran.
  • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000). Highpotassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50: 51-73.
  • Arjmandzadeh R, Karimpour MH, Mazaheri SA, Santos JF, Medina JM, Homam SM (2011). Sr-Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids, Lut Block, Eastern Iran. J Asian Earth Sci 41: 283-296.
  • Arjmandzadeh R, Santos JF (2014). Sr-Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu-Mo porphyry mineralizing intrusives from Lut Block, eastern Iran. Int J Earth Sci (Geol Rundsch) 103: 123-140.
  • Arslan M, Temizel İ, Abdioğlu E, Kolaylı H, Yücel C, Boztuğ D, Şen C (2013). 39Ar-39Ar dating, whole-rock and Sr-Nd-Pb isotope geochemistry of post-collisional Eocene volcanic rocks in the southern part of the Eastern Pontides (NE Turkey): implications for magma evolution in extension-induced origin. Contrib Mineral Petr 166: 113-142.
  • Asiabanha A, Foden J (2012). Post-collisional transition from an extensional volcanosedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos 148: 98-111.
  • Aslan Z, Arslan M, Temizel İ, Kaygusuz A (2014). K-Ar dating, whole-rock and Sr-Nd isotope geochemistry of calc-alkaline volcanic rocks around the Gümüşhane area: implications for post-collisional volcanism in the Eastern Pontides, Northeast Turkey. Miner Petrol 108: 245-267.
  • Aydınçakır E, Şen C (2013). Petrogenesis of the post-collisional volcanic rocks from the Borçka (Artvin) area: Implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos 172: 98-117.
  • Bagherzadeh RM, Karimpour MH, Farmer GL, Stern CR, Santos JF, Rahimi B, Heidarian Shahri MR (2015). U–Pb zircon geochronology, petrochemical and Sr–Nd isotopic characteristic of Late Neoproterozoic granitoid of the Bornaward Complex (Bardaskan, NE Iran). J Asian Earth Sci 111: 54-71.
  • Ballato P, Uba CE, Landgraf A, Strecker MR, Sudo M, Stockli DF, Friedrich A, Tabatabaei SH (2011). Arabia–Eurasia continental collision: insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Geol Soc Am Bull 123: 106-131.
  • Barbarin B, Didier J (1992). Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. T Roy Soc EdinEarth 83: 145-153.
  • Baroz F, Macaudiere J, Montigny R, Noghreyan M, Ohnenstetter M, Rocci G (1984). Ophiolites and related formations in the central part of the Sabzevar (Iran) and possible geotectonics reconstructions. Neu Jb Geol Paläont Abh 168: 358-388.
  • Behroozi A (1987). Geological Map of Feyzabad. Scale 1:100,000, Sheet 7760. Tehran, Iran: Geological Survey of Iran.
  • Berberian M, King GCP (1981). Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18: 210-265.
  • Bernhardt U (1983). Middle Tertiary Volcanic Rocks from the Southern Sabzevar Zone, Khorasan, NE Iran. Geodynamic Project (Geotraverse) in Iran, Geological Survey of Iran Report No. 51. Tehran, Iran: Geological Survey of Iran.
  • Bonin B (2004). Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78: 1-24.
  • Boztuğ D, Jonckheere RC, Wagner GA, Erçin Aİ, Yeğingil Z (2007). Titanite and zircon fission-track dating resolves successive igneous episodes in the formation of the composite Kaçkar batholith in the Turkish Eastern Pontides. Int J Earth Sci 96: 875-886.
  • Chappell BW, White AJR (1992). I- and S-type granites in the Lachlan Fold Belt. T Roy Soc Edin-Earth 83: 1-26.
  • Chen B, Jahn BM, Wei C (2002). Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd-Sr isotope evidence. Lithos 60: 67-88.
  • Cherniak DJ, Watson EB (2000). Pb diffusion in zircon. Chem Geol 172: 5-24.
  • Chiu HY, Chung SL, Zarrinkoub MH, Mohammadi SS, Khatib MM, Iizuka Y (2013). Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162-163: 70-87.
  • Davies JH, von Blanckenburg F (1995). Slab breakoff: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129: 85-102.
  • DePaolo DJ (1981). Trace-element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53: 189-202.
  • DePaolo DJ, Wasserburg GJ (1979) Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochim Cosmochim Ac 43: 615-627.
  • Dilek Y, Furnes H, Shallo M (2007). Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Res 11: 453-475.
  • Dilek Y, Imamverdiyev N, Altunkaynak S (2010). Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. Int Geol Rev 52: 536-578.
  • Dokuz A (2011). A slab detachment and delamination model for the generation of Carboniferous high-potassium I-type magmatism in the eastern Pontides, NE Turkey: the Köse composite pluton. Gondwana Res 19: 926-944.
  • Eftekharnezhad J, Aghanabati A, Hamzehpour A (1974). Geological Map of Sabzevar, Scale 1:250000. Tehran, Iran: Geological Survey of Iran.
  • Ersoy EY, Cüneyt A, Can G, Osman C, Martin P, Dejan P, İbrahim U, Regina MK (2017). U-Pb zircon geochronology of the Paleogene – Neogene volcanism in the NW Anatolia: its implications for the Late Mesozoic-Cenozoic geodynamic evolution of the Aegean. Tectonophysics 717: 284-301.
  • Eyuboğlu Y, Chung SL, Dudas FO, Santosh M, Akaryali E (2011). Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: implications for slab window melting. Gondwana Res 19: 413-429.
  • Faure EG (1986). Principles of Isotope Geology. 2nd ed. New York, NY, USA: John Wiley and Sons.
  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001). A geochemical classification for granitic rocks. J Petrol 41: 2033-2048.
  • Frost CD, Frost BR (2011). On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52: 39- 53.
  • Gansser A (1981). The geodynamic history of the Himalaya, in Zagros, Hindu Kush. In: Gupta HK, Delany FM, editors. HimalayaGeodynamic Evolution, Geodynamic Series 3. Washington, DC, USA: American Geophysical Union, pp. 111-121.
  • Göçmengil G, Karacık Z, Genç ŞC, Billor MZ (2018). 40Ar-39Ar geochronology and petrogenesis of postcollisional trachytic volcanism along the İzmir-Ankara-Erzincan Suture Zone (NE, Turkey). Turkish J Earth Sci 27: 1-31.
  • Golonka J, Bocharova NY (2000). Hot spot activity and the break-up of Pangea. Palaeogeogr Palaeocl 161: 49-69.
  • Green TH (1994). Experimental studies of trace element partitioning applicable to igneous petrogenesis-Sedona 16 years later. Chem Geol 117: 1-36.
  • Gülmez F, Genç SC, Keskin M, Tüysüz O (2013). A post-collision slab-breakoff model for the orgin of the Middle Eocene magmatic rocks of the Armutlu–Almacik belt, NW Turkey and its regional implications. Geol Soc Spec Publ 372: 107-139.
  • Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007). Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. J Petrol 48: 2341-2357.
  • Henderson P (1984). General geochemical properties and abundances of the rare earth elements. In: Henderson P, editor. Rare Earth Element Geochemistry. Amsterdam, the Netherlands: Elsevier, pp. 1-32.
  • Hildreth W (1981). Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res 86: 153-192.
  • Hou ZQ, Cook NJ (2009). Metallogenesis of the Tibetan Collisional Orogen: a review and introduction to the special issue. Ore Geol Rev 36: 2-24.
  • Huang XL, Xu YG, Li XH, Li WX, Lan JB, Zhang HH, Liu YS, Wang YB, Li HY, Luo ZY et al. (2008). Petrogenesis and tectonic implications of Neoproterozoic, highly fractionated A-type granites from Mianning, South China. Precambr Res 165: 190- 204.
  • Jahn BR (2004). The central Asian orogenic belt and growth of the continental crust in the Phanerozoic. In: Malpas J, Fletcher CJN, Ali JR, Aitchison JC, editors. Aspects of the Tectonic Evolution of China. London, UK: Geological Society of London, pp. 73- 100.
  • Jiang XY, Li XH (2014) In situ zircon U–Pb and Hf–O isotopic results for ca. 73 Ma granite in Hainan Island: implications for the termination of an Andean-type active continental margin in southeast China. J Asian Earth Sci 82: 32-46.
  • Karimpour MH (2004). Mineralogy, alteration, source rock, and tectonic setting of iron-oxides Cu–Au deposits and examples of Iran. In: 11th Iranian Crystallography and Mineralogy Society of Iran Proceedings, pp. 184-189.
  • Karsli O, Dokuz A, Uysal Aydin F, Chen B, Kandemir R, Wijbrans J (2010). Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harşit Pluton, Eastern Turkey. Contrib Mineral Petr 167: 467-487.
  • Kasapoğlu B, Ersoy YE, Uysal İ, Palmer MR, Zack T, Koralay EO, Karlsson A (2016). The petrology of Paleogene volcanism in the Central Sakarya, Nallıhan Region: implications for the initiation and evolution of post-collisional, slab break-off related Magmatic activity. Lithos 246: 81-98.
  • Kaygusuz A (2011). Calc-alkaline I-type plutons in the eastern Pontides, NE Turkey: U–Pb zircon ages, geochemical and Sr– Nd isotopic compositions. Chem Erde Geochem 71: 59-75.
  • Kaygusuz A, Arslan M, Siebel W, Sipahi F, İlbeyli N, Temizel İ (2014). LA-ICP MS zircon dating, whole-rock and Sr–Nd– Pb–O isotope geochemistry of the Camiboğazı pluton, Eastern Pontides, NE Turkey: implications for lithospheric mantle and lower crustal sources in arc-related I-type magmatism. Lithos 192: 271-290.
  • Kaygusuz A, Siebel W, Sen C, Satir M (2008). Petrochemistry and petrology of I-type granitoids in an arc setting: the composite Torul pluton, Eastern Pontides, NE Turkey. Int J Earth Sci 97: 739-764.
  • Kemp AIS, Hawkesworth CJ, Collins WJ, Gray CM, Blevin PL, Eimf (2009). Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet Sc Lett 284: 455-466.
  • Keskin M, Genç SC, Tüysüz O (2008). Petrology and geochemistry of post-collisional Middle Eocene volcanic units in NorthCentral Turkey: evidence for magma generation by slab breakoff following the closure of the Northern Neotethys Ocean. Lithos 104: 267-305.
  • Kinzler RJ (1997). Melting of mantle peridotite at pressure approaching the spinel to garnet transition: application to mid ocean ridge petrogenesis. J Geophys Res 102: 853-874.
  • Klein EM (2004). Geochemistry of the igneous oceanic crust. In: Holland HD, Turekian KK, editors. Treatise on Geochemistry. Amsterdam, the Netherlands: Elsevier, pp. 433-463.
  • Koop W, Stoneley R, Ridd M, Murphy R, Osmaston M, Kholief M (1982). Subsidence history of the Middle East Zagros basin, Permian to Recent [and discussion]. Philos Trans R Soc Lond Ser A Math Phys Sci 305: 149-168.
  • Lambert RJ, Holland JG (1974). Yttrium geochemistry applied to petrogenesis utilizing calcium–yttrium relationships in minerals and rocks. Geochim Cosmochim Ac 38: 1393-1414.
  • Langmuir CH, Vocke RD, Hanson GN, Hart SR (1978). A general mixing equation with applications to Icelandic basalts. Earth Planet Sc Lett 37: 380-392.
  • Li X (2013). Alkaline magmatism, water-rock interaction and multiple metamorphism in the Seiland Igneous Province, Northern Norway. PhD, Albert Ludwig University of Freiburg, Freiburg, Germany.
  • Malekzadeh Shafaroudi A, Karimpour MH, Golmohammadi A (2013). Zircon U–Pb geochronology and petrology of intrusive rocks in the C-North and Baghak districts, Sangan iron mine, NE Iran. J Asian Earth Sci 64: 256-271.
  • Martin H (1994). The Archean grey gneisses and the genesis of the continental crust. Developments in Precambrian Geology 11: 205-259.
  • Martin H (1999). The adakitic magmas: modern analogues of Archaean granitoids. Lithos 46: 411-429.
  • McDougall I, Harrison TM (1988). Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford, UK: Oxford University Press.
  • McKenzie D, O’Nions RK (1991). Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32: 1021-1091.
  • McQuarrie N, Stock, JM, Verdel, C and Wernicke BP (2003). Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys Res Lett 30: 2036.
  • Middlemost EAK (1985). Naming materials in the magma/igneous rock system. Earth-Sci Rev 37: 215-224.
  • Moix P, Beccaletto L, Kozur HW, Hochard C, Rosselet F, Stampfli GM (2008). A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics 451: 7-39.
  • Mouthereau F, Lacombe O, Vergés J (2012). Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532: 27- 60.
  • Naderi Mighan N, Torshizian H (1999). Geological Map of Kadkan, Scale 1:100000. Tehran, Iran: Geological Survey of Iran.
  • Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008). Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106: 380-398.
  • Pang KN, Chung SL, Zarrinkoub MH, Khatib MM, Mohammadi SS, Chiu HY, Chu CH, Lee HY, Lo CH (2013). Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: magma genesis and tectonic implications. Lithos 180-181: 234-251.
  • Pearce JA (1996). Sources and settings of granitoids rocks. Episodes 19: 120-125.
  • Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ, Güner Y, Saroglu F, Yilmaz Y, Moorbath S, Mitchell JG (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcanol Geoth Res 44: 189–229.
  • Pearce JA, Harris NBW, Tindle AG (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25: 956-983.
  • Pearce JA, Parkinson IJ (1993). Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard HM, Albaster T, Harris NBW, Neary CR, editors. Magmatic Processes in Plate Tectonics. London, UK: Geological Society of London, pp. 373-403.
  • Peccerillo A, Taylor SR (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Miner Petrol 58: 63-81.
  • Perugini D, Poli G (2004). Analysis and numerical simulation of chaotic advection and chemical diffusion during magma mixing: petrological implications. Lithos 78: 43-66.
  • Ramezani J, Tucker RD (2003). The Saghand Region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana Tectonics. Am J Sci 303: 622-665.
  • Ramsey LA, Walker RT, Jackson J (2008). Fold evolution and drainage development in the Zagros Mountains of Fars province, SE Iran. Basin Res 20: 23-48.
  • Rapp PR, Shimizu N, Norman MD (1999). Applegate, reaction between slab-derived melt and peridotite in the mantle wedge: experimental constrains at 3.8 Gpa. Chem Geol 160: 335-356.
  • Reagan MK, Gill JB (1989). Coexisting calc-alkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source. J Geophys Res 94: 4619-4633.
  • Rubatto D (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184: 123-138.
  • Rubatto D, Williams IS, Buick IS (2001). Zircon and monazite response to prograde metamorphism in the Reynolds Range Central Australia. Contrib Mineral Petr 140: 458-468.
  • Sahandi MR, Hoseini M (1990). Geological Map of Sabzevar, Scale 1:100000. Tehran, Iran: Geological Survey of Iran.
  • Samiee S, Karimpour MH, Ghaderi M, Haidarian Shahri MR, Klöetzli U, Santos JF (2016). Petrogenesis of subvolcanic rocks from the Khunik prospecting area, south of Birjand, Iran: geochemical, Sr–Nd isotopic and U–Pb zircon constraints. J Asian Earth Sci 115: 170-182.
  • Şengör AMC (1987). Tectonics of the Tethysides: orogenic collage development in a collisional setting. Annu Rev Earth Planet Sci 15: 213-244.
  • Şengör AMC (1990). A new model for the late Palaeozoic—Mesozoic tectonic evolution of Iran and implications for Oman. Geol Soc Spec Publ 49: 797-831.
  • Sengör AMC, Natalin BA (1996). Palaeotectonics of Asia: fragments of a synthesis. In: Yin A, Harrison M, editors. The Tectonic Evolution of Asia. Cambridge, UK: Cambridge University Press, pp. 443-486.
  • Şengör AMC, Yilmaz Y (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75: 181-241.
  • Shafaii Moghadam HS, Corfu F, Chiaradia M, Stern RJ, Ghorbani G (2014). Sabzevar Ophiolite, NE Iran: progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos 210-211: 224-241.
  • Shafaii Moghadam HS, Li XH, Ling XX, Santos JF, Stern RJ, Li QL, Ghorbani G (2015). Eocene Kashmar granitoids (NE Iran): petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry. Lithos 216-217: 118-135.
  • Shafaii Moghadam HS, Li XH, Stern RJ, Ghorbani G, Bakhshizad F (2016). Zircon U-Pb ages and Hf-O isotopic composition of migmatites from the Zanjan-Takab complex, NW Iran: constraints on partial melting of metasediments. Lithos 240: 34-48.
  • Shafiei B, Haschke M, Shahabpour J (2009). Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Miner Deposita 44: 265-283.
  • Shahabpour J (2005). Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. J Asian Earth Sci 24: 405-417.
  • Shand SJ (1943). Eruptive Rocks. London, UK: T. Murby. Sisson TW, Grove TL (1993). Experimental investigations of the role of H2 O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petr 113: 143-166.
  • Soltani A (2000). Geochemistry and Geochronology of I-Type Granitoid Rocks in the Northeastern Central Iran Plate. Wollongong, Australia: University of Wollongong.
  • Stampfli GM, Borel GD (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196: 17-33.
  • Stöcklin J (1968). Structural history and tectonics of Iran, a review. Am Assoc Pet Geol Bull 52: 229-1258.
  • Sun SS, McDonough WF (1989). Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond 42: 313-345.
  • Sun W, Williams I, Li S (2002). Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China: evidence for protracted convergence of the North and South China blocks. J Metamorph Geol 20: 873-886.
  • Taylor SR, McLennan SM (2009). Planetary Crusts: Their Composition, Origin and Evolution. Cambridge, UK: Cambridge University Press.
  • Temizel İ, Arslan M, Ruffet G, Peucat JJ (2012). Petrochemistry, geochronology and Sr-Nd isotopic systematics of the Tertiary collisional and post-collisional volcanic rocks from the Ulubey (Ordu) area, eastern Pontide, NE Turkey: implications for extension-related origin and mantle source characteristics. Lithos 128: 126-147.
  • Temizel I, Arslan M, Yücel C, Abdioğlu E, Ruffet G (2016). Geochronology and geochemistry of Eocene-aged volcanic rocks around the Bafra (Samsun, N Turkey) area: constraints for the interaction of lithospheric mantle and crustal melts. Lithos 258: 92-114.
  • Topuz G, Alther R, Schwarz WH, Siebel W, Satır M, Dokuz A (2005). Post-collisional plutonism with adakite-like signatures: the Eocene Saraycık granodiorite (eastern Pontides, Turkey). Contrib Mineral Petr 150: 441-455.
  • Vaezipour MJ, Alavi Tehrani MJ, Behroozi A (1993). Geological map of Torbat e Heydariyeh, Scale 1:250000. Tehran, Iran: Geological Survey of Iran.
  • Verdel C, Wernicke BP, Hassanzadeh J, Guest B (2011). A Paleogene extensional arc flare-up in Iran. Tectonics 30: TC3008.
  • Verdel C, Wernicke BP, Ramezani J, Hassanzadeh J, Renne PR, Spell TL (2007). Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. Geol Soc Am Bull 119: 961-977.
  • Vincent SJ, Allen MB, Ismail-Zadeh AD, Flecker R, Foland KA, Simmons MD (2005). Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Geol Soc Am Bull 117: 1513-1533.
  • Walker R, Jackson J (2004). Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics 23: TC5010.
  • Walter MJ (1998). Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39: 29-60.
  • Wang XX, Wang T, Happala I, Lu XX (2002). Genesis of mafic enclaves from rapakivi-textured granites in the Qinling and its petrological significance: evidence of elements and Nd, Sr isotopes. Acta Petrologica Sinica 21: 935-946 (in Chinese with English abstract).
  • White AJR, Chappell BW (1983). Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geol Soc Am Memoir 159: 2l-34.
  • Williams IS (2001). Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Aust J Earth Sci 48: 557-580.
  • Wu Y, Zheng Y (2004). Genesis of zircon and its constraints on interpretation of U-Pb age. Chin Sci Bull 49: 1554-1569.
  • Yücel C, Arslan M, Temizel İ, Yazar EA, Ruffet G (2017). Evolution of K-rich magmas derived from a net veined lithospheric mantle in an ongoing extensional setting: Geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern Pontides (Turkey). Gondwana Res 45: 65-86.
  • Zhong H, Zhu WG, Hu RZ, Xie LW, He DF, Liu F, Chu ZY (2009). Zircon U–Pb age and Sr–Nd–Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust. Lithos 110: 109-128.
  • Zindler A, Hart SR (1986). Chemical geodynamics. Annu Rev Earth Planet Sci 14: 493-571.