Graphite in rocks of the Popigai impact crater: residual or retrograde?

Graphite in rocks of the Popigai impact crater: residual or retrograde?

The concentration of diamond-bearing tagamite from the Popigai impact crater produces large amounts of graphite in additionto impact diamonds (1:100, respectively). The question arises of whether this is residual graphite not converted to diamond at the time ofthe Popigai impact or is a retrograde form resulting from back-conversion of impact diamond to graphite in a high-temperature tagamitemelt. Experiments show that graphite from tagamite is a residual phase. Coexistence of lonsdaleite, cubic diamond, and single-crystalgraphite within a limited volume may be due to different orientations of the graphite base plane relative to the impact stress direction.Thus, the diamond-bearing rocks may contain significant amounts of residual graphite, which is consistent with published evidence.

___

  • Afanasiev VP, Yefimova ES, Zinchuk NN, Koptil VI (2000). Atlas of Morphology of Diamonds from Russian Sources. Novosibirsk, Russia: SPC UIGGM SB RAS.
  • Andreev VD (1999). Spontaneous graphitization and thermal disintegration of diamond at >2000K. Physics of the Solid State 41: 627-632.
  • Britun VF, Kurdyuiumov AV, Petrusha IA (2003). Nucleation of dense phases upon compaction of hexagonal graphite: structural features. Sverkhtverdye Materialy 5: 11-18.
  • Bundy FP, Casper JS (1966). Hexagonal diamond – a new form of carbon. Journal of Chemical Physics 44: 181-184.
  • Chepurov AI, Fedorov II, Sonin VM (1998). Experimental studies of diamond formation at high PT-parameters (supplement to the model for natural diamond formation). Geologiya i Geofizika 39: 234-244.
  • Chepurov AI, Tomilenko AA, Zhimulev EI, Sonin VM, Chepurov AA et al. (2012). The conservation of an aqueous fluid in inclusions in minerals and their interstices at high pressures and temperatures during the decomposition of antigorite. Russian Geology and Geophysics 53: 234-246.
  • Evans T, James PF (1964). A study of the transformation of diamond to graphite. Proceedings of the Royal Society A277: 260-269.
  • Evans T, Sauter DH (1961). Etching of diamond surfaces with gases. Philosophical Magazine 6: 429-440.
  • Frezzotti ML, Tecce F, Casagli A (2012). Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration 112: 1-20.
  • Galimov E (1984). Variations in the isotope composition of diamonds and their relation to the conditions of diamond formation. Geokhimiya 8: 34-41 (in Russian).
  • Haggerty SE (2017). Carbonado diamond: a review of properties and origin. Gems and Gemology 53: 168-179.
  • Hatipoglu M, Ajo D, Kibici Y, Passeri D (2012). Natural carbon black (Oltu-stone) from Turkey: a micro-Raman study. Neues Jahrbuch für Mineralogie - Abhandlungen 189: 97-101.
  • Hemingway BS, Bohlen SR, Hankins WB, Westrum EF Jr, Kuskov OL (1998). Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of quartz-coesite equilibrium boundary. American Mineralogist 83: 409-418.
  • ICDD (2009). Powder Diffraction File. PDF-2/Release 2009. Newtown Square, PA, USA: International Centre for Diffraction Data, 2009.
  • Jawhari T, Roig A, Casado J (1995). Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33: 1561-1565.
  • Kennedy CS, Kennedy GC (1976). The equilibrium boundary between graphite and diamond. Journal of Geophysical Research 81: 2467-2470.
  • Khmelnitsky RA, Gippius AA (2013). Transformation of diamond to graphite under low pressure. Phase Transit 87: 175-192.
  • Kraus W, Nolze G (1996). POWDER CELL – A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography 29: 301-303.
  • Kryukov VA, Tolstov AV, Afanasiev VP, Samsonov NYu, Kryukov YaV (2016). Ensuring the Russian high-tech industry resources by products based on giant fields of the arctic – Tomtor niobium-rare-Earth and ultra-hard abrasive Popigai material. Interexpo GEO-Siberia 3: 188-192 (in Russian).
  • Masaitis VL (editor) (1998). Diamond-bearing Impactites of the Popigai Astrableme. St. Petersburg, Russia: VSEGEI (in Russian).
  • Masaitis VL (2014). Impact diamonds of the Popigai astrobleme: main properties and practical use. Geology of Ore Deposits 55: 607-612.
  • Nalivkin DV (editor) (2007). Geological Map of the Russian Federation. St. Petersburg, Russia: VSEGEI.
  • Ohfuji H, Irifune T, Litasov KD, Yamashita T, Isobe F et al. (2015). Natural occurrence of pure nano-polycrystalline diamond from impact crater. Scientific Reports 5: 14702.
  • Ohfuji H, Nakaya M, Yelisseyev AP, Afanasiev VP, Litasov KD (2017). Mineralogical and crystallographic of polycrystalline yakutite diamond. Journal of Mineralogical and Petrological Sciences 112: 46-51.
  • Panchenko AV, Tolstykh ND, Gromilov SA (2014). The technique of X-ray diffraction investigation of crystal aggregates. Zhurnal Strukturnoi Khimii 55 (Suppl. 1): S73-S78.
  • Phaal C (1965). Surface studies of diamond I. Industrial Diamond Review 25: 486-489.
  • Prescher C, Prakapenka VB (2015). DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research 35: 223-230.
  • Qian J, Pantea C, Huang J, Zerda TW, Zhao Y (2004). Graphitization of diamond powders of different sizes at high pressure-high temperature. Carbon 42: 2691-2697.
  • Rodriguez-Navarro A (2006). XRD2D Scan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. Journal of Applied Crystallography 39: 905-909.
  • Seal M (1958). Graphitization and plastic deformation of diamond. Nature 182: 1264-1267.
  • Shul’zhenko AA, Ashkinazi EE, Sokolov AN, Petasyuk GA, Aleksandrova LI et al. (2014). Structure and properties of impact diamonds from the Popigai Deposit and polycrystals based on them. Journal of Superhard Materials 36: 156-164 (in Russian).
  • Sonin VM, Chepurov AI, Zhimulev EI, Chepurov AA, Sobolev NV (2013). Surface graphitization of diamond in K2 CO3 melt at high pressure. Doklady Earth Sciences 451: 858-860.
  • Sonin VM, Fedorov II, Pokhilenko LN, Pokhilenko NP (2000). Diamond oxidation rate as related to oxygen fugacity. Geology of Ore Deposits 42: 496-502.
  • Tuinstra F, Koenig JL (1970). Raman spectrum of graphite. Journal of Chemical Physics 53: 1126-1132.
  • Walter AA, Eryomenko GK, Kvasnitsa VN, Polkanov YuA (1992). Carbon Minerals Produced by Impact Metamorphism. Kyiv, Ukraine: Naukova Dumka (in Russian).
  • Wopenka B, Pasteris JD (1993). Structural characterization of kerogens to granulite-facies graphite – applicability of Raman microprobe spectroscopy. American Mineralogist 78: 533-557.
  • Yelisseyev AP, Afanasiev VP, Panchenko AV, Gromilov SA, Kaichev VV et al. (2016). Yakutites: Are they impact diamonds from the Popigai crater? Lithos 265: 278-291.
  • Yelisseyev A, Khrenov A, Afanasiev V, Pustovarov V, Gromilov S et al. (2015). Luminescence of natural carbon nanomaterials — impact diamonds from the Popigai astrobleme. Diamond and Related Materials 58: 69-77.
  • Yelisseyev A, Meng GS, Afanasiev V, Pokhilenko N, Pustovarov V et al. (2013). Optical properties of impact diamonds from the Popigai astrobleme. Diamond and Related Material 37: 8-16.
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK