Application of zircon typology method to felsic rocks (Cappadocia, Central Anatolia, Turkey): a zircon crystallization temperature perspective

Application of zircon typology method to felsic rocks (Cappadocia, Central Anatolia, Turkey): a zircon crystallization temperature perspective

Zircon typology was developed nearly half a century ago as a tool for constraining the thermochemical conditions in graniticmagmas from the morphology of zircon prismatic and pyramidal crystal surfaces. Although the method precedes experimentallyconstrained zircon-based thermometers (zircon saturation, Ti-in-zircon), the morphology of zircon remains an important criterionfor zircon studies commonly relying on visual recognition of crystals during sample purification via hand-picking. This may introduceselection bias if morphologically distinct zircon crystals are present in a population. We conducted a comparison between zircontypology and thermochemical constraints from zircon thermometry and whole rock compositions. Therefore, we focused on zirconpopulations from diverse volcanic rocks from the Central Anatolian Volcanic Province (CAVP), which erupted during the UpperMiocene to Quaternary in a continental environment in a postcollisional extensional regime. Neogene rhyolitic volcanism producedwidespread pyroclastic rocks (ignimbrites, and subordinate fall-out deposits), which are interstratified with fluviolacustrine sedimentsand local lava flows originating from various volcanic centers in the region. Zircon crystals from Neogene ignimbrites are mostlyintermediate-temperature, calc-alkaline hybrid type, whereas zircons from Quaternary rhyolitic domes/lavas fall into typology trendsassigned to subalkaline mantle-type granites with low temperatures and high alkalinity indices. Trends in zircon saturation andzircon crystallization temperatures in CAVP ignimbrites are broadly consistent with typology temperature estimates, but temperaturedifferences between these estimates are slightly higher or lower. However, these deviations may partly result from zircon typologyrelying on crystal shape, and thus the latest crystallization event, which could result in bias between the granitic rocks used for theoriginal typology development and the volcanic rocks investigated here. Our results show that typology differences exist between zirconpopulations from both Miocene ignimbrites and Quaternary rhyolitic domes/lavas of the CAVP. These differences affect the temperaturevalues obtained from zircon typologies that also correlate with conventional quantitative thermometric calculations.

___

  • Anani C, Tateishi M, Asiedu D, Atta-Peters D, Manu D (2012). Zircon typology as indicator of provenance in Neoproterozoic Sandstones of the Voltaian Basin. Ghana. Res J Environ Earth Sci 4: 151-161.
  • Antoine PO, Orliac MJ, Atici, G, Ulusoy I, Sen E, Çubukçu HE, Albayrak E, Oyal N, Aydar E, Sen Ş (2012). A rhinocerotid skull cooked-to-death in a 9.2 Ma-old ignimbrite flow of Turkey. PLoS One 7: e49997.
  • Aydar E, Çubukçu HE, Şen E, Akın L (2013). Central Anatolian Plateau, Turkey: incision and paleoaltimetry recorded from volcanic rocks. Turk J Earth Sci 22: 739-746.
  • Aydar E, Schmitt AK, Çubukçu HE, Akin L, Ersoy O, Sen E, Duncan RA, Atici G (2012). Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. J Volcanol Geoth Res 213-214: 83-97.
  • Aydin F, Schmitt AK, Siebel W, Sönmez M, Ersoy Y, Lermi A et al. (2014). Quaternary bimodal volcanism in the Nigde Volcanic Complex (Cappadocia, central Anatolia, Turkey): age, petrogenesis and geodynamic implications. Contrib Mineral Petr 1078: 1-24.
  • Barbarin B (1988). Use of typology for study of some granites from Massif Central, France. Rend Soc Ital Mineral Petrol 43: 463- 476.
  • Belousova EA, Griffin WL, O’Reilly SY (2006). Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian Granitoids. J Petrol 47: 329-353.
  • Benisek A, Finger F (1993). Factors controlling the development of prism face in granite zircons, a microprobe study. Contrib Mineral Petr 114: 441-451.
  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013). Zircon saturation re-revisited. Chem Geol 351: 324-334.
  • Caironi V (1994). The zircon typology method in the study of metamorphic rocks: the orthogneisses of the Eastern Serie dei Laghi (Southern Alps). Rend Fis Acc Lincei 5: 37-58.
  • Carmichael ISE, Turner FJ, Verhoogen J (1974). Igneous Petrology. New York, NY, USA: McGraw-Hill.
  • Claiborne LL, Miller CF, Wooden JL (2010b). Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Mineral Petrol 160: 511-531.
  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003). Atlas of zircon textures. Rev Mineral Geochem 53: 496-500.
  • Ferry JM, Watson EB (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petr 154: 429-437.
  • Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008). Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petr 156: 197-215.
  • Hanchar JM, Watson EB (2003). Zircon saturation thermometry. Rev Mineral Geochem 53: 89-112.
  • Harrison TM, Schmitt AK (2007). High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sc Lett 261: 9-19.
  • Harrison TM, Watson EB (1983). Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Mineral Petr 84: 66-72.
  • Harrison TM, Watson EB, Aikman AB (2007). Temperature spectra of zircon crystallization in plutonic rocks. Geology 35: 635- 638.
  • Hayden LA, Watson EB (2007). Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sc Lett 258: 561-568.
  • Gervasoni F, Klemme S, Rocha-Junior RVE, Berndt J (2016). Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts. Contrib Mineral Petr 172: 1-12.
  • Innocenti F, Mazzuoli R, Pasquarè G, Radicati di Brozolo F, Villari L (1975). The Neogene calc-alkaline volcanism of Central Anatolia: geochronological data on Kayseri–Nigde area. Geol Mag 112: 349-360.
  • Jamshidibadr M (2016). Study of zircon crystals: An implication to determine of source and temperature of crystallization in Turkeh, Dareh Pluton, NW Iran. J Sci I R 27: 343-352.
  • Kabesh ML, Atia MS, Dawoud M (1999). Typology and microprobe analysis of zircons as an indicator to evolution and genesis of Abu El-Hasan granitoids, Northern Eastern Desert, Egypt. Acta Min Petr Szeged 40: 21-44.
  • Klötzli US, Koller F, Scharbert S, Höck A (2001). Cadomian lowercrustal contributions to Variscan Granite petrogenesis (South Bohemian Pluton. Austria): constraints from zircon typology and geochronology, whole-rock, and feldspar Pb-Sr isotope systematics. J Petrol 42: 1621-1642.
  • Köksal S, Göncüoğlu MC, Toksoy-Köksal F, Möller A, Kemnitz H (2008). Zircon typologies and internal structures as petrogenetic indicators in contrasting granitoid types from central Anatolia, Turkey. J Mineral Petrol 93: 185-211.
  • Le Bas MJ, Lemaitre RW, Streckeisen A, Zanettin B (1986). A chemical classification of volcanic-rocks based on the total alkali silica diagram. J Petrol 27: 745-750.
  • Le Pennec JL, Bourdier JL, Froger JL, Temel A, Camus G, Gourgaud A (1994). Neogene ignimbrites of the Nevşehir plateau, Central Turkey. J Volcanol Geoth Res 63: 59-87.
  • Loi A, Dabard MP (1997). Zircon typology and geochemistry in palaeogeographic reconstruction of the Late Ordovician of Sardinia (Italy). Sediment Geol 112: 263-279.
  • Pasquare G (1968). Geology of the Cenozoic volcanic area of Central Anatolia. Atti Accad Naz Lincei 9: 53-204.
  • Pasquare G, Poli, S, Vezzoli, L, Zanchi, A (1988). Continental arc volcanism and tectonic setting in Central Anatolia, Turkey. Tectonophysics 146: 217-230.
  • Pupin JP (1976). Signification des caractéres morphologiques du zircon commun des roches en pétrologie. Base de la méthode typologique. PhD, Nice University, Nice, France (in French).
  • Pupin JP (1980). Zircon and granite petrology. Contrib Mineral Petrol 73: 207-220.
  • Pupin JP, Turco G (1972). Une typologie originale du zircon accessoire. Bull Soc Fr Mineral Cristallogr 95: 348-359 (in French).
  • Pupin JP, Turco G (1975). Typologie du zircon accessoire dans les roches plutoniques dioritiques, granitiques et syenitiques: Facteurs essentials determinant les variations typologiques. Pétrologie 1: 139-156 (in French).
  • Scaillet B, Holtz F, Pichavant M (2016). Experimental constrains on the formation of silicic magmas. Elements 12: 109-114.
  • Schaefer J, Doerr W (1997). Heavy mineral analysis and typology of detrital zircons; a new approach to provenance study (Saxothuringian flysh, Germany). J Sediman Res 67: 451-461
  • Schaltegger U (2007). Hydrothermal zircons. Elements 3: 51-79.
  • Schaltegger U, Davies HFLJ (2017). Petrochronology of zircon and baddeleyite in igneous rocks: reconstructing magmatic processes at high temporal resolution. Rev Mineral Geochem 83: 297-328.
  • Schmitt AK, Danišík M, Evans NJ, Siebel W, Kiemele E, Aydin F, Harvey JC (2011). Acigöl rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates. Contrib Mineral Petrol 162: 1215-1231.
  • Shand SJ (1943). Eruptive Rocks: Their Genesis, Composition and Classification, with a Chapter on Meteorites. 2nd ed. New York, NY, USA: Wiley.
  • Siebel W, Schmitt AK, Kiemele E, Danisik M, Aydin F (2011). Acigöl rhyolite field, central Anatolia (part II): geochemical and isotopic (Sr-Nd-Pb, δ18O) constraints on volcanism involving two high-silica rhyolite suites. Contrib Mineral Petrol 162: 1233-1247.
  • Siegel C, Bryan SE, Allen CM, Gust DA (2018). Use and abuse of zircon-based thermometers: Acritical review and a recommended approach to identify antecrystic zircons. Earth Sci Rev 176: 87-116.
  • Temel A, Gündoğdu MN, Gourgaud A, Le Pennec JL (1998). Ignimbrites of Cappadocia (Central Anatolia, Turkey): petrology and geochemistry. J Volcanol Geoth Res 85: 447-471.
  • Toprak V, Göncüoğlu MC (1993). Tectonic control on the development of the Neogene-Quaternary Central Anatolian Volcanic Province, Turkey. Geol J 28: 357-369.
  • Toth TM, Kovacs G (1999). Zircon typology in granitoid rocks of the Ditro Massif, Transylvania, Romania. Acta Min Petr Szeged 40: 45-54.
  • Valley JW, Kinny PD, Schulze DJ Spicuzza MJ (1998). Zircon megacrysts from kimberlite; oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133: 1-11.
  • Vavra G (1993). A guide to quantitative morphology of accessory zircon. Chem Geol 110: 15-28.
  • Viereck-Götte L, Lepetit P, Gürel A, Ganskow G, Çopuroğlu I, Abratis M (2010). Revised volcanostratigraphy of the Upper Miocene to Lower Pliocene Ürgüp Formation, Central Anatolian volcanic province, Turkey. Geol Soc Am Spec Pap 464: 85-112.
  • Watson EB (1996). Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models, and implications for isotopic inheritance. Geol S Am S 31: 43- 56.
  • Watson EB, Harrison TM (1983). Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sc Lett 64: 295-304.
  • Watson EB, Harrison TM (2005). Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308: 841-844.
  • Watson EB, Wark DA, Thomas JB (2006). Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151: 413-433.