Mineralogy and geochemistry of feed coals and combustion residues of the Kangal power plant (Sivas, Turkey)
Mineralogy and geochemistry of feed coals and combustion residues of the Kangal power plant (Sivas, Turkey)
This study focuses on mineralogical and geochemical compositions of feed coal (FC) and combustion residues, namely fly ash(FA) and bottom ash (BA) samples, obtained from the Kangal coal-fired power plant in central Turkey. The X-ray powder diffractiondata indicate that carbonate and clay minerals are dominant phases in the FC samples. In the FA samples, quartz, hematite, anhydrite,lime, and feldspar are generally dominant and abundant phases, whereas calcite, ettringite, and portlandite are generally more abundantin the BA samples. The elements Mo, Cs, and U are significantly enriched in the studied FC, FA, and BA samples. The statistical analysisand SEM-EDX data show that Ca, Ti, and the vast majority of trace elements are inorganically affiliated, and only Tl and U have probable organic affinity in the FC. In addition, the redox conditions in the paleomires presumably resulting in Mo and U enrichment in FC,whereas their enrichment in FA and BA is most likely related to retention by CaO and Ca-sulfate. The Cs enrichment in FA is due toretention by glass. The elements in the FA and BA are distinguished into four groups according to their volatility during combustion. Theelements As, Mo, Cd, Tl, and U (Group I) are the most volatile elements during combustion and condensation in the FA. The elementsLi, Zn, Ga, Rb, Nb, Cs, Ba, La, and Pb (Group IV) did not become more volatile or less volatile during combustion and are located in BA.Nevertheless, Zn and Pb in the BA seem to be related to the presence of unaffected pyrite and sphalerite, and are due to low combustionefficiency of the boiler during the sampling period. Overall, enriched elements and minerals in FA and BA suggest that their disposalshould be undertaken with caution.
___
- Akar G, Sen S, Yilmaz H, Arslan V, Ipekoglu U (2013).
Characterization of ash deposits from the boiler of Yenikoy
coal-fired power plant, Turkey. International Journal of Coal
Geology 105: 85-90. doi: 10.1016/j.coal.2012.12.001
- American Society for Testing and Materials (2003). Standard Test
Method for Gross Calorific Value of Coal and Coke. West
Conshohocken, PA, USA: ASTM International. doi: 10.1520/
D5865-13
- American Society for Testing and Materials (2008). Standard Test
Method for Sulfur in the Analysis Sample of Coal and Coke
Using High-Temperature Tube Furnace Combustion. West
Conshohocken, PA, USA: ASTM International. doi: 10.1520/
D4239-18E01
- American Society for Testing and Materials (2011). Standard Test
Method for Ash in the Analysis Sample of Coal and Coke from
Coal. West Conshohocken, PA, USA: ASTM International. doi:
10.1520/D3174-12R18
- American Society for Testing and Materials (2017). Standard Test
Method for Volatile Matter in the Analysis Sample of Coal and
Coke. West Conshohocken, PA, USA: ASTM International.
doi: 10.1520/D3175-18
- Arbuzov SI, Volostnov AV, Rikhvanov LP, Mezhibor AM, Ilenok
SS (2011). Geochemistry of radioactive elements (U, Th)
in coal and peat of northern Asia (Siberia, Russian Far East,
Kazakhstan, and Mongolia). International Journal of Coal
Geology 86: 318-328. doi: 10.1016/j.coal.2011.03.005
- Baba A, Kaya A, Birsoy YK (2003). The effect of Yatagan thermal
power plant (Mugla, Turkey) on the quality of surface and
ground waters. Water Air Soil and Pollution 149: 93-111. doi:
10.1023/A:1025660629875
- Basarir H, Karpuz C (2004). A rippability classification system for
marls in lignite mines. Engineering Geology 74: 303-318.
doi:10.1016/j.enggeo.2004.04.004
- Bayat O (1998). Characterisation of Turkish fly ashes. Fuel 77: 1059-
1066. doi: 10.1016/S0016-2361(97)00274-3
- Bohor BF, Triplehorn DM (1993). Tonstein: Altered Volcanic Ash
Layers in Coal-Bearing Sequences. Geological Society of
America Special Paper 285. Boulder, CO, USA: Geological
Society of America. doi: 10.1130/SPE285-p1
- Brownfield ME, Affolter RH, Stricker GD, Hildebrand RT (1995).
High chromium contents in Tertiary coal deposits of
northwestern Washington-a key to their depositional history.
International Journal of Coal Geology 27: 153-169. doi:
10.1016/0166-5162(94)00026-V
- Bryant G, Bailey C, Wu H, McLennan A, Stanmore B et al. (1999).
The significance of the high temperature behaviour of siderite
grains during combustion. In: Gupta RP, Wall TF, Baxter
L (editors). Impact of Mineral Impurities in Solid Fuel
Combustion. New York, NY, USA: Kluwer Academic/Plenum
Publications, pp. 581-594. doi: 10.1007/0-306-46920-0_43
- Burger K, Bandelow FK, Bieg G (2000). Pyroclastic kaolin coal–
tonsteins of the Upper Carboniferous of Zonguldak and
Amasra, Turkey. International Journal of Coal Geology 45: 39-
53. doi: 10.1016/S0166-5162(00)00021-5
- Chelgani SC, Hower JC (2018). Estimating REY content of
eastern Kentucky coal samples based on their associated ash
elements. Journal of Rare Earths 36: 1234-1238. doi: 10.1016/j.
jre.2018.02.015
- Chen G, Sun Y, Yan B, Yang R, Liu B et al. (2018b). Distribution of
trace elements during coal gasification: the effect of upgrading
method. Journal of Cleaner Production 190: 193-199. doi:
10.1016/j.jclepro.2018.04.077
- Chen J, Chen, P, Yao D, Huang W, Tang S et al. (2018a). Geochemistry
of uranium in Chinese coals and the emission inventory of
coal-fired power plants in China. International Geological
Review 60: 621-637. doi: 10.1080/00206814.2017.1295284
- Córdoba P, Ochoa-Gonzalez R, Font O, Izquierdo M, Querol X et
al. (2012). Partitioning of trace inorganic elements in a coalfired power plant equipped with a wet flue gas desulphurisation
system. Fuel 92: 145-157. doi: 10.1016/j.fuel.2011.07.025
- Creelman RA, Ward CR, Schumacher G, Juniper L (2013). Relation
between coal mineral matter and deposit mineralogy in
pulverized fuel furnaces. Energy and Fuels 27: 5714-5724. doi:
10.1021/ef400636q
- Dai S, Han D, Chou CL (2006a). Petrography and geochemistry of
the Middle Devonian coal from Luquan, Yunnan Province,
China. Fuel 85: 456-464. doi: 10.1016/j.fuel.2005.08.017
- Dai S, Li T, Jiang Y, Ward CR, Hower JC et al. (2015b). Mineralogical
and geochemical compositions of the Pennsylvanian coal in
the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia,
China: implications of sediment-source region and acid
hydrothermal solutions. International Journal of Coal Geology
137: 92-110. doi: 10.1016/j.coal.2014.11.010
- Dai S, Liu J, Ward CR, Hower JC, French D et al. (2016). Mineralogical
and geochemical compositions of Late Permian coals and host
rocks from the Guxu Coalfield, Sichuan Province, China, with
emphasis on enrichment of rare metals. International Journal
of Coal Geology 166: 71-95. doi: 10.1016/j.coal.2015.12.004
- Dai S, Ren D, Zhou Y, Chou CL, Wang X et al. (2008). Mineralogy
and geochemistry of a superhigh-organic-sulfur coal, Yanshan
Coalfield, Yunnan, China: evidence for a volcanic ash
component and influence by submarine exhalation. Chemical
Geology 255: 182-194. doi: 10.1016/j.chemgeo.2008.06.030
- Dai S, Seredin VV, Ward CR, Hower JC, Xing Y et al. (2015a).
Enrichment of U–Se–Mo–Re–V in coals preserved within
marine carbonate successions: geochemical and mineralogical
data from the Late Permian Guiding Coalfield, Guizhou,
China. Mineralium Deposita 50: 159-186. doi: 10.1007/
s00126-014-0528-1
- Dai S, Ward CR, Graham IT, French D, Hower JC et al. (2017).
Altered volcanic ashes in coal and coal-bearing sequences: a
review of their nature and significance. Earth-Science Reviews
175: 44-74. doi: 10.1016/j.earscirev.2017.10.005
- Dai S, Zeng R, Sun Y (2006b). Enrichment of arsenic, antimony,
mercury, and thallium in a Late Permian anthracite from
Xingren, Guizhou, Southwest China. International Journal of
Coal Geology 66: 217-226. doi: 10.1016/j.coal.2005.09.001
- Dai S, Zhao L, Hower JC, Johnston MN, Song W et al. (2014).
Petrology, mineralogy, and chemistry of size-fractioned fly
ash from the Jungar power plant, Inner Mongolia, China, with
emphasis on the distribution of rare earth elements. Energy
and Fuels 28: 1502-1514. doi: 10.1021/ef402184t
- Dai S, Zhao L, Peng S, Chou CL, Wang X et al. (2010). Abundances
and distribution of minerals and elements in high-alumina
coal fly ash from the Jungar Power Plant, Inner Mongolia,
China. International Journal of Coal Geology 81: 320-332. doi:
10.1016/j.coal.2009.03.005
- Drew LJ, Grunsky EC, Schuenemeyer JH (2008). Investigation of the
structure of geological process through multivariate statistical
analysis-the creation of a coal. Mathematical Geosciences 40:
789-811. doi: 10.1007/s11004-008-9176-2
- Erol M, Genç A, Öveçoǧlu ML, Yücelen E, Küçükbayrak S et al.
(2000). Characterization of a glass-ceramic produced from
thermal power plant fly ashes. Journal of European Ceramic
Society 20: 2209-2214. doi: 10.1016/S0955-2219(00)00099-6
- Esenlik S, Karayigit AI, Bulut Y, Querol X, Alastuey A et al. (2006).
Element behaviour during combustion in coal-fired Orhaneli
power plant, Bursa-Turkey. Geologica Acta 4: 439-449. doi:
10.1344/105.000000345
- Eskenazy GM, Finkelman RB, Chattarjee S (2010). Some
considerations concerning the use of correlation coefficients
and cluster analysis in interpreting coal geochemistry data.
International Journal of Coal Geology 83: 491-493. doi:
10.1016/j.coal.2010.05.006
- Fernandez-Turiel JL, Georgakopoulos A, Gimeno D, Papastergios
G, Kolovos N (2004). Ash deposition in a pulverized coal-fired
power plant after high-calcium lignite combustion. Energy and
Fuels 18: 1512-1518. doi: 10.1021/ef0400161
- Filippidis A, Georgakopoulos A, Kassoli-Fournaraki A (1996).
Mineralogical components of some thermally decomposed
lignite and lignite ash from the Ptolemais basin, Greece.
International Journal of Coal Geology 30: 303-314. doi:
10.1016/0166-5162(95)00049-6
- Finkelman RB, Palmer CA, Wang P (2018). Quantification of the
modes of occurrence of 42 elements in coal. International
Journal of Coal Geology 185: 138-160. doi: 10.1016/j.
coal.2017.09.005
- Fotopoulou M, Siavalas G, İnaner H, Katsanou K, Lambrakis N et al.
(2010). Combustion and leaching behavior of trace elements in
lignite and combustion by-products from the Muğla basin, SW
Turkey. Bulletin of the Geological Society of Greece 43: 2218-
2228.
- Gayer RA, Rose M, Dehmer J, Shao LY (1999). Impact of sulphur
and trace element geochemistry on the utilization of a marineinfluenced coal-case study from the South Wales Variscan
foreland basin. International Journal of Coal Geology 40: 151-
174. doi: 10.1016/S0166-5162(98)00066-4
- Geboy NJ, Engle MA, Hower JC (2013). Whole-coal versus ash basis
in coal geochemistry: a mathematical approach to consistent
interpretations. International Journal of Coal Geology 113: 41-
49. doi: 10.1016/j.coal.2013.02.008
- Gong B, Tian C, Xiong Z, Zhao Y, Zhang J (2016). Mineral changes
and trace element releases during extraction of alumina from
high aluminum fly ash in Inner Mongolia, China. International
Journal of Coal Geology 166: 96-107. doi: 10.1016/j.
coal.2016.07.001
- Goodarzi F (2006). Assessment of elemental content of milled coal,
combustion residues, and stack emitted materials: possible
environmental effects for a Canadian pulverized coal-fired
power plant. International Journal of Coal Geology 65: 17-25.
doi: 10.1016/j.coal.2005.04.006
- Goodarzi F, Hower JC (2008). Classification of carbon in Canadian
fly ashes and their implications in the capture of mercury. Fuel
87, 1949-1957. doi: 10.1016/j.fuel.2007.11.018
- Goodarzi F, Huggins F, Sanei H (2008). Assessment of elements,
speciation of As, Cr, Ni and emitted Hg for a Canadian power
plant burning bituminous coal. International Journal of Coal
Geology 74: 1-12. doi: 10.1016/j.coal.2007.09.002
- Hower JC, Groppo JG, Graham UM, Ward CR, Kostova IJ et al.
(2017). Coal-derived unburned carbons in fly ash: a review.
International Journal of Coal Geology 179: 11-27. doi:
10.1016/j.coal.2017.05.007
- Hower JC, Qian D, Briot NJ, Henke KR, Hood MM et al. (2018). Rare
earth element associations in the Kentucky State University
stoker ash. International Journal of Coal Geology 189: 75-82.
doi: 10.1016/j.coal.2018.02.022
- Hower JC, Robl TL, Thomas G, Hopps SD, Grider M (2009).
Chemistry of coal and coal combustion products from
Kentucky power plants: results from the 2007 sampling, with
emphasis on selenium. Coal Combustion and Gasification
Products 1: 50-62. doi: 10.4177/CCGP-D-09-0013.1
- Huffman GP, Huggins FE, Levasseur AA, Chow O, Srinivasachar
S et al. (1989). Investigation of the transformations of pyrite
in a drop-tube furnace. Fuel 68: 485-490. doi: 10.1016/0016-
2361(89)90271-8
- Huffman GP, Huggins FE, Shah N, Shah A (1990). Behavior of
basic elements during coal combustion. Progress in Energy
and Combustion Science 16: 243-251. doi: 10.1016/0360-
1285(90)90033-Y
- Kalender L, Karamazı K (2017). A comparison of the Kalburçayırı
lignites in the Kangal-Sivas basin and various worldwide coal
compositions. International Journal of Oil, Gas and Coal
Technology 15: 394-410. doi: 10.1504/IJOGCT.2017.10003100
- Karayiğit Aİ, Bircan C, Mastalerz M, Oskay RG, Querol X et al.
(2017b). Coal characteristics, elemental composition and
modes of occurrence of some elements in the İsaalan coal
(Balıkesir, NW Turkey). International Journal of Coal Geology
172: 43-59. doi: 10.1016/j.coal.2017.01.016
- Karayigit AI, Bulut Y, Karayigit G, Querol X, Alastuey A et al. (2006).
Mass balance of major and trace elements in a coal-fired power
plant. Energy Sources Recovery, Utilization, and Environmental
Effects 28: 1311-1320. doi: 10.1080/009083190910523
- Karayigit AI, Bulut Y, Querol X, Alastuey A, Vassilev S (2005).
Variations in fly ash composition from the soma power
plant, Turkey. Energy Sources 27: 1473-1481. doi:
10.1080/009083190523811
- Karayigit AI, Gayer RA, Ortac FE, Goldsmith S (2001b). Trace
elements in the Lower Pliocene fossiliferous Kangal lignites,
Sivas, Turkey. International Journal of Coal Geology 47: 73-89.
doi: 10.1016/S0166-5162(01)00030-1
- Karayigit AI, Gayer RA, Querol X, Onacak T (2000). Contents of
major and trace elements in feed coals from Turkish coal-fired
power plants. International Journal of Coal Geology 44: 169-
184. doi: 10.1016/S0166-5162(00)00009-4
- Karayiğit Aİ, Littke R, Querol X, Jones T, Oskay RG et al. (2017a).
The Miocene coal seams in the Soma Basin (W. Turkey):
insights from coal petrography, mineralogy and geochemistry.
International Journal of Coal Geology 173: 110-128. doi:
10.1016/j.coal.2017.03.004
- Karayiğit Aİ, Mastalerz M, Oskay RG, Gayer RA (2018). Coal
petrography, mineralogy, elemental compositions and
palaeoenvironmental interpretation of Late Carboniferous
coal seams in three wells from the Kozlu coalfield (Zonguldak
Basin, NW Turkey). International Journal of Coal Geology
187: 54-70. doi: 10.1016/j.coal.2017.12.007
- Karayigit AI, Onacak T, Gayer RA, Goldsmith S (2001a). Mineralogy
and geochemistry of feed coals and their combustion
residues from the Cayirhan power plant, Ankara, Turkey.
Applied Geochemistry 16: 911-919. doi: 10.1016/S0883-
2927(00)00061-5
- Ketris MP, Yudovich YE (2009). Estimations of Clarkes for
carbonaceous biolithes: world averages for trace element
contents in black shales and coals. International Journal of
Coal Geology 78: 135-148. doi: 10.1016/j.coal.2009.01.002
- Koçaslan A, Yüksek AG, Görgülü K, Arpaz E (2017). Evaluation of
blast-induced ground vibrations in open-pit mines by using
adaptive neuro-fuzzy inference systems. Environmental Earth
Sciences 76: 57. doi: 10.1007/s12665-016-6306-x
- Kolker A (2012). Minor element distribution in iron disulfides in
coal: a geochemical review. International Journal of Coal
Geology 94: 32-43. doi: 10.1016/j.coal.2011.10.011
- Kostova I, Vassileva C, Dai S, Hower JC (2016). Mineralogy,
geochemistry and mercury content characterization of fly ashes
from the Maritza 3 and Varna thermoelectric power plants,
Bulgaria. Fuel 186: 674-684. doi: 10.1016/j.fuel.2016.09.015
- Koukouzas N, Ward CR, Li Z (2010). Mineralogy of lignites and
associated strata in the Mavropigi field of the Ptolemais Basin,
northern Greece. International Journal of Coal Geology 81:
182-190. doi: 10.1016/j.coal.2009.12.012
- Kuşcu İ, Tosdal RM, Gencalioğlu-Kuşcu G, Friedman R, Ullrich
TD (2013). Late Cretaceous to Middle Eocene magmatism
and metallogeny of a portion of the southeastern Anatolian
orogenic belt, east-central Turkey. Economic Geology 106:
641-666. doi: 10.2113/econgeo.108.4.641
- Li J, Zhuang X, Querol X, Font O, Moreno N et al. (2012).
Environmental geochemistry of the feed coals and their
combustion by-products from two coal-fired power plants in
Xinjiang province, Northwest China. Fuel 95: 446-456. doi:
10.1016/j.fuel.2011.10.025
- Llorens JF, Fernández-Turiel JL, Querol X (2001). The fate of trace
elements in a large coal-fired power plant. Environmental
Geology 40: 409-416. doi: 10.1007/s002540000191
- López-Antón AM, Spears DA, Somoano MD, Martínez Tarazona
MR (2013). Thallium in coal: analysis and environmental
implications. Fuel 105: 13-18. doi: 10.1016/j.fuel.2012.08.004
- Marschik R, Spikings R, Kuşcu I (2008). Geochronology and
stable isotope signature of alteration related to hydrothermal
magnetite ores in Central Anatolia, Turkey. Mineralium
Deposita 43:111-124. doi: 10.1007/s00126-007-0160-4
- McLennan AR, Bryant GW, Bailey CW, Stanmore BR, Wall TF
(2000). An experimental comparison of the ash formed from
coals containing pyrite and siderite mineral in oxidizing
and reducing conditions. Energy and Fuels 14: 308-315. doi:
10.1021/ef990092h
- Meij R (1994). Trace element behavior in coal-fired power plants.
Fuel Processing Technology 39: 199-217. doi: 10.1016/0378-
3820(94)90180-5
- Meij R, te Winkel BH (2009). Trace elements in world steam coal
and their behaviour in Dutch coal-fired power stations: a
review. International Journal of Coal Geology 77: 289-293. doi:
10.1016/j.coal.2008.07.015
- Moreno N, Querol X, Andrés JM, Stanton K, Towler M et al. (2005).
Physico-chemical characteristics of European pulverized
coal combustion fly ashes. Fuel 84: 1351-1363. doi: 10.1016/j.
fuel.2004.06.038
- Narin R, Kavuşan G (1993). Geology of the Kalburçayırı lignite basin,
Sivas-Kangal Turkey. Bulletin of the Faculty of Engineering,
Cumhuriyet University, Series A, Earth Science 10: 43-47.
- Oskay RG, Christanis K, Inaner H, Salman M, Taka M (2016).
Palaeoenvironmental reconstruction of the eastern part
of the Karapınar-Ayrancı coal deposit (Central Turkey).
International Journal of Coal Geology 163: 100-111. doi:
10.1016/j.coal.2016.06.022
- Oskay RG, Inaner H, Karayiğit Aİ, Christanis K (2013). Coal deposits
of Turkey: properties and importance on energy demand.
Bulletin of the Geological Society of Greece 47: 2111-2120.
Palmer CA, Tuncali E, Dennen KO, Coburn TC, Finkelman RB
(2004). Characterization of Turkish coals: a nationwide
perspective. International Journal of Coal Geology 60, 85-115.
doi: 10.1016/j.coal.2004.05.001
- Querol X, Cabrera L, Pickel W, López-Soler A, Hagemann HW
et al. (1996). Geological controls on the coal quality of
the Mequinenza subbituminous coal deposit, northeast
Spain. International Journal of Coal Geology 29: 67-91. doi:
10.1016/0166-5162(95)00009-7
- Querol X, Fernandez-Turiel JL, López-Soler A (1994). The
behaviour of mineral matter during combustion of Spanish
subbituminous and brown coals. Mineralogical Magazine 58:
119-133. doi: 10.1180/minmag.1994.058.390.11
- Querol X, Fernandez-Turiel JL, López-Soler A (1995). Trace elements
in coal and their behaviour during combustion in a large power
station. Fuel 74: 331-343. doi: 10.1016/0016-2361(95)93464-O
- Querol X, Whateley MKG, Fernández-Turiel JL, Tuncali E (1997).
Geological controls on the mineralogy and geochemistry of
the Beypazari lignite, central Anatolia, Turkey. International
Journal of Coal Geology 33: 255-271. doi: 10.1016/S0166-
5162(96)00044-4
- Reifenstein AP, Kahraman H, Coin CDA, Calos NJ, Miller G et
al. (1999). Behaviour of selected minerals in an improved
ash fusion test: quartz, potassium feldspar, sodium feldspar,
kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite.
Fuel 78: 1449-1461. doi: 10.1016/S0016-2361(99)00065-4
- Rudmin M, Ruban A, Savichev O, Mazurov A, Dauletova A et al.
(2018). Authigenic and detrital minerals in peat environment
of Vasyugan swamp, Western Siberia. Minerals 8: 500. doi:
10.3390/min8110500
- Ruppert LF, Hower JC, Eble CF (2005). Arsenic-bearing pyrite and
marcasite in the Fire Clay coal bed, Middle Pennsylvanian
Breathitt Formation, eastern Kentucky. International Journal
of Coal Geology 63: 27-35. doi: 10.1016/j.coal.2005.02.003
- Siavalas G, Linou M, Chatziapostolou A, Kalaitzidis S,
Papaefthymiou H et al. (2009). Palaeoenvironment of Seam I
in the Marathousa Lignite Mine, Megalopolis Basin (Southern
Greece). International Journal of Coal Geology 78: 233-248.
doi: 10.1016/j.coal.2009.03.003
- Silva LFO, Oliveira MLS, Kautzmann RM, Ramos CG, Izquierdo
M et al. (2014). Geochemistry and mineralogy of coalfired circulating fluidized bed combustion fly ashes. Coal
Combustion and Gasification Products 6: 16-28. doi: 10.4177/
CCPG-D-14-00005.1
- Sokol EV, Kalugin VM, Nigmatulina EN, Volkova NI, Frenkel AE et
al. (2002). Ferrospheres from fly ashes of Chelyabinsk coals:
chemical composition, morphology and formation conditions.
Fuel 81: 867-876. doi: 10.1016/S0016-2361(02)00005-4
- Song W, Jiao F, Yamada N, Ninomiya Y, Zhu Z (2013). Condensation
behavior of heavy metals during oxy-fuel combustion:
deposition, species distribution, and their particle
characteristics. Energy and Fuels 27: 5640-5652. doi: 10.1021/
ef400484p
- Spears DA, Tewalt SJ (2009). The geochemistry of environmentally
important trace elements in UK coals, with special reference to
the Parkgate coal in the Yorkshire-Nottinghamshire Coalfield,
UK. International Journal of Coal Geology 80: 157-166. doi:
10.1016/j.coal.2009.08.010
- Spliethoff H, Greul U, Rüdiger H, Hein KRG (1996). Basic effects on
NOx emissions in air staging and reburning at a bench-scale test
facility. Fuel 75: 560-564. doi: 10.1016/0016-2361(95)00281-2
- Styszko-Grochowiak K, Golłaś J, Jankowski H, Koziński S
(2004). Characterization of the coal fly ash for the purpose
of improvement of industrial on-line measurement of
unburned carbon content. Fuel 83: 1847-1853. doi: 10.1016/j.
fuel.2004.03.005
- Suárez-Ruiz I, Valentim B, Borrego AG, Bouzinos A, Flores D et al.
(2017). Development of a petrographic classification of flyash components from coal combustion and co-combustion
(an ICCP classification system, Fly-Ash Working Group –
Commission III). International Journal of Coal Geology 183:
188-203. doi: 10.1016/j.coal.2017.06.004
- Swaine DJ (1990). Trace Elements in Coal. London, UK: Butterworths.
Tercan AE, Karayigit AI (2001). Estimation of lignite reserve in the
Kalburcayiri field, Kangal basin, Sivas, Turkey. International
Journal of Coal Geology 47: 91-100. doi: /10.1016/S0166-
5162(01)00033-7
- Toprak S, Yalcin Erik N (2011). Petrographical properties and unusual
features of Kangal coals, Sivas-Turkey. International Journal of
Coal Geology 86: 297-305. doi: 10.1016/j.coal.2011.03.002
- Tuncalı E, Çiftci B, Yavuz N, Toprak S, Köker A et al. (2002).
Chemical and Technological Properties of Turkish Tertiary
Coals. Ankara, Turkey: MTA Publication.
- Turhan S, Gören E, Garad AMK, Altıkulaç A, Kurnaz A et al. (2018).
Radiometric measurement of lignite coal and its by-products
and assessment of the usability of fly ash as raw materials in
- Turkey. Radiochimica Acta 106: 611-621. doi: 10.1515/ract2017-2863
Valentim B, Białecka B, Gonçalves PA, Guedes A, Guimarães R et al.
(2018). Undifferentiated inorganics in coal fly ash and bottom
ash: calcispheres, magnesiacalcispheres, and magnesiaspheres.
Minerals 8: 140. doi: 10.3390/min8040140
- Valentim B, Shreya N, Paul B, Gomes CS, Sant’Ovaia H et al. (2016).
Characteristics of ferrospheres in fly ashes derived from Bokaro
and Jharia (Jharkand, India) coals. International Journal of
Coal Geology 153: 52-74. doi: 10.1016/j.coal.2015.11.013
- Vassilev SV, Menendez R, Alvarez D, Diaz-Somoano M, MartínezTarazona MR (2003). Phase-mineral and chemical composition
of coal fly ashes as a basis for their multicomponent utilization.
1. Characterization of feed coals and fly ashes. Fuel 82: 1793-
1811. doi: 10.1016/S0016-2361(03)00123-6
- Vassilev SV, Vassileva CG (1996). Mineralogy of combustion wastes
from coal-fired power stations. Fuel Processing Technology 47:
261-280. doi: 10.1016/0378-3820(96)01016-8
- Vassilev SV, Vassileva CG, Karayigit AI, Bulut Y, Alastuey A et
al. (2005a). Phase-mineral and chemical composition of
composite samples from feed coals, bottom ashes and fly ashes
at the Soma power station, Turkey. International Journal of
Coal Geology 61: 35-63. doi: 10.1016/j.coal.2004.06.004
- Vassilev SV, Vassileva CG, Karayigit AI, Bulut Y, Alastuey A et al.
(2005b). Phase-mineral and chemical composition of fractions
separated from composite fly ashes at the Soma power station,
Turkey. International Journal of Coal Geology 61: 65-85. doi:
0.1016/j.coal.2004.05.004
- Wang C, Liu H, Zhang Y, Zou C, Anthony EJ (2018). Review of
arsenic behavior during coal combustion: volatilization,
transformation, emission and removal technologies. Progress
in Energy and Combustion Science 68: 1-28. doi: 0.1016/j.
pecs.2018.04.001
- Ward CR (2016). Analysis, origin and significance of mineral matter
in coal: an updated review. International Journal of Coal
Geology 165: 1-27. doi: 10.1016/j.coal.2016.07.014
- Ward CR, French D (2006). Determination of glass content and
estimation of glass composition in fly ash using quantitative
X-ray diffractometry. Fuel 85: 2268-2277. doi: 10.1016/j.
fuel.2005.12.026
- Yalçin Erik N (2011). Hydrocarbon generation potential and
Miocene-Pliocene paleoenvironments of the Kangal Basin
(Central Anatolia, Turkey). Journal of Asian Earth Sciences 42:
1146-1162. doi: 10.1016/j.jseaes.2011.06.013
- Yağmurlu F, Toker E, Şentürk M (2016). The coal-quality distribution
of lignite deposits and tectono-sedimentary evolution of
Etyemez in Kangal Neogene basin (Central Anatolia, Turkey).
International Journal of Oil, Gas and Coal Technology 11: 75-
92. doi: 10.1504/IJOGCT.2016.073781
- Yilmaz G (2012). Structural characterization of glass-ceramics made
from fly ash containing SiO2-Al2O3-Fe2O3-CaO and analysis
by FT-IR-XRD-SEM methods. Journal of Molecular Structure
1019: 37-42. doi: 10.1016/j.molstruc.2012.03.028
- Zhang Y, Shi M, Wang J, Yao J, Cao Y et al. (2016). Occurrence of
uranium in Chinese coals and its emissions from coal-fired
power plants. Fuel 166: 404-409. doi: 10.1016/j.fuel.2015.11.014
- Zhao CL, Sun YZ, Xiao L, Qin SJ, Wang JX et al. (2014). The
occurrence of barium in a Jurassic coal in the Huangling 2
Mine, Ordos Basin, northern China. Fuel 128: 428-432. doi:
10.1016/j.fuel.2014.03.040
- Zhao S, Duan Y, Li Y, Liu M, Lu J et al. (2018). Emission characteristic
and transformation mechanism of hazardous trace elements
in a coal-fired power plant. Fuel 214: 597-606. doi: 10.1016/j.
fuel.2017.09.093