Petrography, geochemistry and origin of Lower Liassic dolomites in the Aydıncık area, Mersin, Southern Turkey
Aydıncık yöresinde Alt Liyas karbonatları hakim olarak kireçtaşı ve dolomitik kireçtaşı ara seviyeleri içeren dolomitlerden oluşur. Bu karbonatlar gel-git çevresi ortamında çökelmiş ve daha sonra erken ve geç evre dolomitleşmesine uğramıştır. Petrografik olarak üç tip dolomit belirlenmiştir: (1) 13-65 $mu m$ kristal boyutlu ve iyi doku korunmalı çok ince ile ince kristalli dolomit (Tl); (2) 65-270 $mu m$ kristal boyutlu ve doku korunmasız iri kristalli şeker dokulu dolomit (T2); ve (3) bulanık iri dolomit kristalleri (T2) çevresinde açık dış kenar veya fenestral gözenekleri çevreleyen ve çimento dolgusu olarak görülen dolomit çimento (T3). T1-tip dolomitler gel-git çevresi çökellerin çökelmeyle yaşıt ornatımıyla deniz suyundan oluşmuş erken evreyi karakterize eder. Daha sonra T2-tip dolomitler yaklaşık 50 °C gömülme sıcaklığında T1-tip dolomitlerin yeniden kristallenmesiyle oluşmuştur ve T3-dolomitler aynı dolomitleşme sıvısından çimento olarak çökelmiştir. Yeniden kristallenme erken evre dolomitlerinin dokusunda, kristallenme derecesinde, izotop kimyasında ve iz element içeriğinde değişimlere neden olmuştur. X-ışını difraksiyonu verileri yeniden kristallenme dolomitlerinin (T2) erken dolomitlere (T1) göre hafifçe daha iyi kristallenmeli ve daha az kalsiyum içerikli olduğunu gösterir. İri kristalli dolomitlerin (T2) daha negatif $delta^{18}O$ değerleri ve düşük Sr içerikleri yeniden kristallenme sırasında diyajenetik sıvı ile dengeyi yansıtır. T2-dolomit örneklerinin $delta^{18}O$ ve Sr değerlerinin birlikte değişim eğilimi ilerleyici yeniden kristallenmeyi destekler şekilde kristal boyutuyla ters bir ilişkiyi gösterir. Dolomitlerin $delta^{13}C$ değerleri hemen hemen aynıdır ve dolomitleşme sırasında çok az değişim gösteren tipik denizel değerleri gösterir. T2-dolomitlerinin güneye doğru kapanan geometrisi, dolomitleşme sıvısının erken sıkışma sonucu olarak kuzeyden güneye platform karbonatlarının içine ilerlediğini gösterir.
Aydıncık yöresinde (Mersin, Güney Türkiye) Alt Liyas dolomitlerinin petrografisi, jeokimyası ve kökeni
In the Aydıncık area, the Lower Liassic carbonates consist predominantly of dolomites, including limestone and dolomitic limestone intervals. These carbonates were deposited in peritidal environments, and later underwent early and late stage dolomitization. Petrographically, three dolomite-types are determined: (1) very fine to fine crystalline dolomite (T1) with crystal size of 13-65 $mu m$ and a good fabric preservation, (2) coarse crystalline sucrosic dolomite (T2) with size of 65 to 270 $mu m$ and fabric destruction, and (3) dolomite cement (T3) that occurs as a clear outer rim to cloudy coarse dolomite crystals (T2) or as a pore-lining and cement-fill of fenestral pores. The T1-type dolomites characterize the early stage of dolomitization formed from seawater by syn-sedimentary replacement of peritidal sediments. T2-type dolomites are derived from T1-type dolomites by recrystallization at increased burial temperature of ~50 °C. T3-type dolomites are precipitated as a cement from the same dolomitizing fluid. The recrystallization caused changes in texture, crystal ordering, isotope compositions and trace element contents. X-ray diffraction data indicates that the recrystallized dolomite (T2) is slightly better ordered and less calcium-rich than early dolomites (T1). More negative $delta^{18}O$ values and lower Sr contents of the coarse crystalline dolomites (T2) reflect an equilibration with late diagenetic fluid during the recrystallization. The covariant trend between $delta^{18}O$ and Sr values of T2-type dolomites shows an inverse relationship with their crystal size, suggesting progressive recrystallization. The $delta^{13}C$ values of both dolomites are almost in the same range indicating the typical marine values that suggest little modification during late dolomitization. The T2-type dolomite geometry pinching out to the southward indicates an invasion of dolomitizing fluid from the north to the seaward into the platform carbonates, as a result of early compaction.
___
- ADAMIA, S., BERGOUGNAN, H., FOURQUIN, C, HAGHIPOUR, A., LORDKIPANIDZE, M.B., ÖZGÜL, N., RICOU, L.E. & ZAKARIADZE, G.S. 1980. The Alpine Middle East between the Aegean and the Oman traverses. In: AUBOUIN, J., DEBELMAS, J. & LATREILLE, M. (eds), Texte Integral du Colloque C.5 Geologie des Chaines Alpines Issues de la Tethys. Publications de 26e Congres Geologique International, Paris, 122-136.
- ALLAN, J.R. & MATTHEWS, R.K. 1977. Carbon and oxygen isotopes as diagenetic and stratigraphic tools: data from surface and subsurface of Barbados, West.Indies. Geology 5, 16-20.
- ALLAN, J.R. & MATTHEWS, R.K. 1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology 29, 797-817.
- ALLEN, P.A. & ALLEN, J.R. 1990. Basin Analysis: Principles and Applications. Blackwell Scientific Publications, Oxford.
- ARENAS, C., ALONSO ZARZA, A.M. & PARDO, G. 1999. Dedolomitization and other early diagenetic processes in Miocene lacustrine deposits, Ebro Basin (Spain). Sedimentary Geology 125, 23-45.
- AL-AASM, I.S. & PACKARD, J.J. 2000. Stabilization of early-formed dolomite: a tale of divergence from two Mississippian dolomites. Sedimentary Geology 131, 97-108.
- AUAJJAR, J. & BOULEGUE, J. 2003. Dolomitization patterns of the Liassic platform of the Tazekka Pb-Zn district, Taza, eastern Morocco: petrographic and geochemical study. Journal of South American Earth Sciences 16, 167-178.
- BALOG, A., READ, F. & HAAS, J. 1999. Climate-controlled early dolomite, late Triassic cyclic platform carbonates, Hungary. Journal of Sedimentary Research 69, 267-282.
- BANNER, J.L., HANSON, G.N. & MEYERS, W.J. 1988. Water-rock interaction history of regionally extensive dolomites of the Burlington-Keokuk Formation (Mississippian): isotopic evidence. In: SHUKLA, V. & BAKER, P.A. (eds), Sedimentology and Geochemistry of Dolostones. Society of Economic Paleontologists and Mineralogists, Special Publications 43, 97-113.
- BEHRENS, E.W. & LAND, L.S. 1972. Subtidal Holocene dolomite, Baffin Bay, Texas. Journal of Sedimentary Petrology 42, 155-161.
- BOISTELLE, R. 1982. Mineral crystallization from solutions. Estudios Geologicos 38, 135-153.
- BOZKURT, E. 2001. Neotectonics of Turkey - a synthesis. Geodinamica Ada 14, 3-30.
- BRINDLEY, G.W. 1980. Quantitative X-ray analysis of clays. In: BRINDLEY, G.W. & BROWN, G.-(eds); Crystal Structures of Clay Minerals and Their X-ray Identification. Mineralogical Society Monograph S, 411-438.
- BUDD, D.A. 1997. Cenozoic dolomites of carbonate islands: their attributes and origin. Earth Science Reviews 42, 1-47.
- CARBALLO, J.D., LAND, L.S. & MISER, D.E. 1987. Holocene dolomitization of supratidal sediments by active tidal pumping, Sugarloaf Key, Florida. Journal of Sedimentary Petrology 57, 153-165.
- CHEN, D., QING, H. & YANG, C. 2004. Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China. Sedimentology 51, 1029-1051.
- DAWANS, J.M. & SWART, P.K. 1988. Textural and geochemical alternations in Late Cenozoic Bahamian dolomites. Sedimentology .35, 385-403.
- DEMİRTAŞLI, E., TURHAN, N., BİLGİN, A.Z. & SELİM, M. 1984. Geology of the Bolkar mountains. In: TEKELİ, 0. & GÖNCÜOĞLU, M.C. (eds), Geology of the Taurus Belt. Proceedings of International Tauride Symposium. Mineral Research and Exploration Institute (MTA) of Turkey Publications, 125-141.
- DEWEY, J.F., PITMANN, W.C., RYAN, W.B.F. & BOWIN, J. 1973. Plate tectonic evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180.
- DICKSON, J.A.D. 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology 36, 491-505.
- DICKSON, J.A.D. & COLEMAN, M.L. 1980. Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology 27,107-118.
- EREN, M. 1993. Burial dolomitization within Atoka carbonates. Giornale diGeologia 55, 171-176.
- EREN, M., TASLI, K. & TOL, N. 2002. Sedimentology of Liassic carbonates (Pirencik Tepe measured section) in the Aydıncık (İçel) area, southern Turkey. Journal of Asian Earth Sciences 20, 791-801.
- FRIEDMAN, I. & O'NEIL, J.R. 1977. Compilation of stable isotope factors of geochemical interest. In: FLEISCHER, M. (ed), Data of Geochemistry. United States Geological Survey Professional Paper 440-KK, 1-12.
- FRITZ, P. & SMITH, D.G.W. 1970. The isotopic composition of secondary dolomite. Geochimica et Cosmochimica Acta 34, 1161-1173.
- GINSBURG, R.N. 1975. Tidal Deposits: A Casebook of Recent Examples and Fossil Counterparts. Springer-Verlag, Berlin.
- GOLDSMITH, J.R., GRAF, D.L. & HEARD, H.C. 1961. Lattice constants of the calcium-magnesium carbonates. American Mineralogists 46, 453-457.
- GÜNDOĞDU, M.N. 1982. Geological, Mineralogical and Geochemical Investigation of the Bigadiç Neogene Sedimentary Basin. PhD Thesis, Hacettepe University, Ankara [in Turkish with English abstract, unpublished].
- HAAS, J. & DEMENY, A. 2002. Early dolomitisation of Late Triassic platform carbonates in the Transdanubian Range (Hungary). -Sedimentary Geology 151, 225-242.
- HALLEY, R.B. 1975. Peritidal lithologies of Cambrian carbonate islands, Carrara Formation, Southern Great Basin. In: GINSBURG, R.N. (ed), Tidal Deposits. Springer-Verlag, Berlin, 279-288.
- HARDIE, L.A. 1987. Dolomitization: a critical view of some current views. Journal of Sedimentary Petrology 57, 166-183.
- HARDY, R. & TUCKER, M. 1995. X-ray powder diffraction of sediments. In: TUCKER, M. (ed), Techniques in Sedimentology. Blackwell Science, Oxford, 191-228.
- HOLSER, W.T. 1984. Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In: HOLLAND, H.D. & TRENDALL, A.F. (eds), Patterns of Change of Earth Evolution. Springer-Verlag, Berlin, 171-205.
- KABAL, Y. & TASLI, K. 2003. Biostratigraphy of the lower Jurassic carbonates from the Aydıncık area (Central Taurides, S Turkey) and morphological analysis of Lituolipora Termieri (Hottinger, 1967). Journal of Foraminiferal Research 33, 338-351.
- KETİN, İ. 1966. Tectonics units of Anatolia (Asia Minor). Mineral Research and Exploration Institute (MTA) of Turkey Bulletin 66, 23-34.
- KOÇ, H. 1996. Stratigraphy and Geotectonic Interpretation of Aydıncık (İÇEL) Area. MSc Thesis, Mersin University [in Turkish, unpublished].
- KOÇ, H., ÖZER, E. & ÖZSAYAR, T. 1997. Geology of Aydıncık (İçel) area. Geosound: Earth Sciences 30, 417-427 [in Turkish with English , abstract].
- KOÇ, .H., ÜNLÜGENÇ, U.C. & ÖZER, E. 2005. Tectono-stratigraphical investigation of an area between Aydıncık-Bozyazı (Mersin). Geological Society of Turkey Bulletin 48, 1-26 [in Turkish with English abstract].
- LAND, L.S. 1980. The isotopic and trace element geochemistry of dolomite: the state of the art. In: ZENGER, D.H. & ETHINGTON, R.L. (eds), Concept and Models of Dolomitization. Society of Economic Paleontologists and Mineralogists, Special Publications 28, 87-110.
- LAND, L.S. 1985. The origin of massive dolomite. Journal of Geological Education 33, 112-125.
- LOHMANN, K.C. & WALKER, J.C.G. 1989. The d O record of Phanerozoic abiotic marine calcite cements. Geophysical Research Letters 16, 319-322.
- MACHEL, H.G. 1997. Recrystallization versus neomorphism, and the concept of significant recrystallization in dolomite research. Sedimentary Geology 113, 161-168.
- MACHEL, H.G. & MOUNTJOY, E.W. 1986. Chemistry and environments of dolomitization - A reappraisal. Earth Science Reviews 23, 175-222.
- MAZZULLO, S.J., BISCHOFF, W.D. & TEAL, C.S. 1995. Holocene shallow-subtidal dolomitization by near-normal seawater, northern Belize. Geology 23, 341-344.
- MORROW, D.W. 1982. Diagenesis 11. Dolomite-Part 11. Dolomitization models and ancient dolostones. Geoscience Canada 9, 95-107.
- MRESAH, M.H. 1998. The massive dolomitization of platformal and basinal sequences: proposed models from the Paleocene, Northeast Sirte Basin, Libya. Sedimentary Geology 116, 199-226.
- ÖZGÜL, N. 1984. Stratigraphic and tectonic evolution of the central Taurides. In: TEKELI, O. & GÖNCÜOĞLU, M.C. (eds), Geology of the Taurus Beit Proceedings of International Tauride Symposium. Mineral Research and Exploration Institute (MTA) of Turkey Publications, 77-90.
- PARK, R. 1976. A note on the significance of lamination in stromatolites. Sedimentology 23, 379-393.
- POPP, B.N., ANDERSON, T.F. & SANBERG, P.A. 1986. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geological Society of America Bulletin 97, 1262-1269.
- QING, H. 1998. Petrography and geochemistry of early-stage, fine- and medium-crystalline dolomites in the Middle Devonian Presqu'ile Barrier at Pine Point, Canada. Sedimentology 45, 433-446.
- QING, H., BOSENCE, D.W.J. & ROSE, E.P.F. 2001. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology 48, 153-163.
- REINHOLD, C., 1998. Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology 121, 71-95.
- ROBERTSON, A. 1998. Mesozoic-Tertiary tectonic evolution of the east Mediterranean area: relevance to Turkish geology. The Third International Turkish Geology Symposium. Middle East Technical University, Ankara, Abstracts, p. 16.
- ROSALES, I., QUESADA, S. & ROBLES, S. 2004. Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 253-275.
- ŞENGÖR, A.M.C. & YILMAZ, Y. 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181-241.
- ŞENGÖR, A.M.C, YILMAZ, Y. & SUNGURLU, O. 1984. Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Paleo-tethys. In: DIXON, J.E. & ROBERTSON, A.H.F. (eds), Evolution of Eastern Mediterranean. Geological Society, London, Special Publications 13, 117-152.
- SIBLEY, D.F. 1982. The origin of common dolomite fabrics: clues from the Pliocene. Journal of Sedimentary Petrology 52, 1087-1100.
- TAYLOR, T.R. & SIBLEY, D.F. 1986. Petrographic and geochemical characteristics of dolomite types and the origin of ferroan dolomite in the Trenton Formation, Ordovician, Michigan Basin, USA. Sedimentology 33, 61-86.
- THERIAULT, F. & HUTCHEON, I. 1987. Dolomitization and calcitization of the Devonian Grosmont Formation, northern Alberta. Journal of ( Sedimentary Petrology 57, 955-966.
- TUCKER, M.E. 1991. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. Blackwell Science, Oxford.
- TUCKER, M.E. & WRIGHT, V.P. 1990. Carbonate Sedimentology. Blackwell Science, Oxford.
- VAROL, B. & MATSUMOTO, R. 2005. Early and late dolomites in the carbonate platform: An example from Middle Devonian carbonates of the Taurus Mountains, south-central Turkey. Neues Jahrbuch fur Mineralogie-Abhandlungen 181, 135-145.
- VEIZER, J., ALA, D., AZMY, K., BRUCKSCHEN, P., BUHL, D., BRUHN, F., CARDEN, G.A.F., DIENER, A., EBNETH, S., GODDERIS, Y., JASPER, T., KORTE, C., PAWELLEK, F., PODLAHA, O.G. & STRAUSS, H. 1999. $^{87}Sr/^{86}Sr$, $d^{13}C$ and $d^{18}0$ evolution of Phanerozoic seawater. Chemical Geology 161, 59-88.
- VEIZER, J. & HOEFS, J. 1976. The nature of 180/160 and 13C/12C secular trends in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta 40, 1387-1395.
- WARREN, J. 2000. Dolomite: occurrence, evolution and economically important associations. Earth Science Reviews 52, 1-81.
- YEŞİLOT, M. 2005. Origin of Lower Liassic dolomites in Aydıncık/Mersin Area. MSc Thesis, Mersin University [in Turkish with English abstract, unpublished].
- YOO, C.M. & LEE, Y.I. 1998. Origin and modification of early dolomites in cyclic shallow platform carbonates, Yeongheung Formation (Middle Ordovician), Korea. Sedimentary Geology 18, 141-157.
- YÜKSEL, M.M. 1985. Geology of the Aydıncık (İçel) Region. MSc Thesis, Middle East Technical University [unpublished].
- ZENGZHAO, F., YONGSHENG, Z. & ZHENKUI, J. 1998. Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, north China Platform. Sedimentary Geology 118, 127-140.