Magmatic processes at the volcanic front of Central Mexican Volcanic Belt: Sierra de Chichinautzin Volcanic Field (Mexico)

The Sierra de Chichinautzin (SCN) volcanic field is considered one of the key areas to understand the complex petrogenetic processes at the volcanic front of the Mexican Volcanic Belt (MVB). New as well as published major- and trace-element and Sr and Nd isotopic data are used to constrain the magma generation and evolution processes in the SCN. From inverse and direct modelling, combined 87Sr/86Sr and 143Nd/144Nd data, and use of multi-dimensional log-ratio discriminant function based diagrams and other geological and geophysical considerations, we infer that mafic magmas from the SCN were generated by partial melting of continental lithospheric mantle in an extensional setting. Inverse modelling of primary magmas from the SCN further indicates that the source region is not depleted in high-field strength elements (HFSE) compared to large ion lithophile elements (LILE) and rare-earth elements (REE). The petrogenesis of evolved magmas from the SCN is consistent with the partial melting of the continental crust facilitated by influx of mantle-derived magmas. Generally, an extensional setting is indicated for the SCN despite continuing subduction at the Middle America Trench.

Magmatic processes at the volcanic front of Central Mexican Volcanic Belt: Sierra de Chichinautzin Volcanic Field (Mexico)

The Sierra de Chichinautzin (SCN) volcanic field is considered one of the key areas to understand the complex petrogenetic processes at the volcanic front of the Mexican Volcanic Belt (MVB). New as well as published major- and trace-element and Sr and Nd isotopic data are used to constrain the magma generation and evolution processes in the SCN. From inverse and direct modelling, combined 87Sr/86Sr and 143Nd/144Nd data, and use of multi-dimensional log-ratio discriminant function based diagrams and other geological and geophysical considerations, we infer that mafic magmas from the SCN were generated by partial melting of continental lithospheric mantle in an extensional setting. Inverse modelling of primary magmas from the SCN further indicates that the source region is not depleted in high-field strength elements (HFSE) compared to large ion lithophile elements (LILE) and rare-earth elements (REE). The petrogenesis of evolved magmas from the SCN is consistent with the partial melting of the continental crust facilitated by influx of mantle-derived magmas. Generally, an extensional setting is indicated for the SCN despite continuing subduction at the Middle America Trench.

___

  • Agostini, S., Corti, G., Doglioni, C., Carminati, E., Innocenti, F., Tonarini, S., Manetti, P., Di Vincenzo, G. & Montanari, D. 200 Tectonic and magmatic evolution of the active volcanic front in El Salvador: insight into the Berlín and Ahuachapán geothermal areas. Geothermics 35, 368–408. Agrawal, S. 1999. Geochemical discrimination diagrams: a simple way of replacing eye-fitted boundaries with probability based classifier surfaces. Journal of the Geological Society of India 54, 335–346.
  • Agrawal, S., Guevara, M. & Verma, S.P. 2008. Tectonic discrimination of basic and ultrabasic rocks through log-transformed ratios of immobile trace elements. International Geology Review 50, 1057–1079.
  • Aguirre-Díaz, G.J., Dubois, M., Laureyns, J. & Schaaf, P. 2002. Nature and P-T conditions of the crust beneath the central Mexican Volcanic Belt based on Precambrian crustal xenolith. International Geology Review 44, 222–242.
  • Aitchison, J. 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London.
  • Alaniz-Alvarez, S.A., Nieto-Samaniego, A.F. & Ferrari, L. 1998. Effect of strain rate in the distribution of monogenetic and polygenetic volcanism in the Transmexican Volcanic Belt. Geology 26, 591–594.
  • Alvarado, G.E., Soto, G.J., Schmincke, H.-U., Bolge, L.L. & Sumita, M. 200 The 1968 andesitic lateral blast eruption at Arenal volcano, Costa Rica. Journal of Volcanology and Geothermal Research 157, 9–33.
  • Bardintzeff, J.M. & Deniel, C. 1992. Magmatic evolution of Pacaya and Cerro Chiquito volcanological complex, Guatemala. Bulletin of Volcanology 54, 267–283.
  • Barnett, V. & Lewis, T. 1994. Outliers in Statistical Data. John Wiley & Sons, Chichester.
  • Bevington, P.R. & Robinson, D.K. 2003. Data Reduction and Error Analysis for the Physical Sciences. Mc-Graw Hill, Boston.
  • Bergantz, G.W. 1989. Underplating and partial melting: implications for melt generation and extraction. Science 245, 1093–1095.
  • Blatter, D.L., Farmer, G.L. & Carmichael, I.S.E. 2007. A north-south transect across the Central Mexican Volcanic Belt at ~100°W: spatial distribution, petrological, geochemical and isotopic characteristics of Quaternary volcanism. Journal of Petrology 48, 901–950.
  • Bloomfield, K. 1975. A late-Quaternary monogenetic volcano field in central Mexico. Geologische Rundschau 64, 476–497.
  • Bolge, L.L., Carr, M.J., Feigenson, M.D. & Alvarado, G.E. 2006. Geochemical stratigraphy and magmatic evolution at Arenal volcano, Costa Rica. Journal of Volcanology and Geothermal Research 157, 34–48.
  • Cabanis, B. & Lecolle, M. 1989. Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes Rendus Academie de Sciences Paris Serie II 309, 2023–2029.
  • Cameron, B.I., Walker, J.A., Carr, M.J., Patino, L.C., Matías, O. & Feigenson, M.D. 2002. Flux versus decompression melting at stratovolcanoes in southeastern Guatemala. Journal of Volcanology and Geothermal Research 119, 21–50.
  • Campos-Enríquez, J.O. & Sánchez-Zamora, O. 2000. Crustal structure across southern Mexico inferred from gravity data.
  • Journal of South American Earth Sciences 13, 479–489. Carr, M.J. 1984. Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. Journal of Volcanology and Geothermal Research 20, 231–252.
  • Carr, M.J., Feigenson, M.D. & Bennett, E.A. 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central America arc. Contributions to Mineralogy and Petrology 105, 369–380.
  • Castillo, P. 2006. An overview of adakite petrogenesis. Chinese
  • Science Bulletin 51, 257–268. Cervantes, P. & Wallace, P.J. 2003. Role of H 2 O in subduction-zone magmatism: New insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31, 235–238.
  • Córdova, C., Martin del Pozzo, A.L. & López, C.J. 1994. Paleolandforms and volcanic impact on the environment of Prehistoric Cuicuilco, southern Mexico City. Journal of Archeology Science 21, 585–596.
  • De Cserna, Z., Fries, C., Rincón-Orta, C., Silver, T.L., Westley, H., Solorio-Munguía, J. & Schmitter-Villada, E. 1974. Datos geocronométricos terciarios de los Estados de México, Morelos y Guerrero. Boletín de la Asociación Mexicana de Geólogos Petroleros 26, 263–273.
  • Deer, W.A., Howie, A.R. & Zusmann, J. 1997. Rock Forming Minerals. Longman, London.
  • Delgado, H., Molinero, R., Cervantes, P., Nieto-Obregón, J., LozanoSanta Cruz, R., Macías-González, H.L., Mendoza-Rosales, C. & Silva Romo, G. 1998. Geology of Xitle volcano in southern
  • Mexico City, a 2000-year old monogenetic volcano in an urban area. Revista Mexicana de Ciencias Geológicas 15, 115–131.
  • Delgado-Granados, H. & Martín del Pozo, A.L. 1993. Pliocene to Holocene volcanic geology at the junction of Las Cruces, Chichinautzin and Ajusco ranges, southwest of Mexico City.
  • Geofísica Internacional 32, 511–522. DePaolo, D.J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth and Planetary Science Letters 53, 189–202.
  • Dick, H.J.B. & Bullen, T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions of Mineralogy and Petrology 86, 54–
  • Doglioni, C., Carminati, E., Cuffaro, M. & Scrocca, D. 2007. Subduction kinematics and dynamic constraints. Earth-Science Reviews 83, 125–175.
  • Droop, G.T.R. 1987. A general equation for estimating Fe +3 concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51, 431–435.
  • Dufek, J. & Bergantz, GVW. 2005. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt-crust interaction. Journal of Petrology 46, 2167–2195.
  • Ego, F. & Ansan, V. 2002. Why is the Central Trans-Mexican Volcanic Belt (102°–99°W) in transtensive deformation? Tectonophysics 359, 189–208.
  • Faure, G. 1986. Principles of Isotope Geology. Wiley, New York.
  • Ferrari, L. 2004. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology 32, 77–80.
  • Ferrari, L., Petrone, C.M. & Francalanci, L. 2001. Generation of oceanic-island basalt-type volcanism in the western TransMexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting. Geology 29, 507–510.
  • Fisk, M.R. 1986. Basalt magma interaction with harzburgite and the formation of high-magnesium andesites. Geophysical Research Letters 13, 467–470.
  • Fix, J.E. 1975. The crust and the upper mantle of central Mexico. Geophysical Journal of the Royal Astronomical Society 43, 453– 4
  • Fries, C. 1960. Geología de Estado de Morelos y partes adyacentes de México y Guerrero, región central meridional de México. Boletín del Instituto de Geología, UNAM 60, 1–236.
  • Gallagher, K. & Petford, N. 2001. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth and Planetary Science Letters 193, 483–499.
  • Gamble, J.A., Wright, I.C., Woodhead, J.D. & McCulloch, M.T. 1995. Arc and back-arc geochemistry in the southern Kermadec arcNgatoro basin and offshore Taupo volcanic zone, SW Pacific. In: Smellie, J.L. (ed), Volcanism Associated with Extension at Consuming Plate Margins. Geological Society Special Publication 81, 193–212.
  • García-Palomo, A., Macías, J.L. & Garduño, V.H. 2000. Miocene to Recent structural evolution of the Nevado de Toluca volcano region, Central Mexico. Tectonophysics 318, 281–302.
  • García-Palomo, A., Macías, J.L., Arce, J.L., Capra, L., Garduño, V.H. & Espíndola, J.M. 2002. Geology of Nevado de Toluca Volcano and Surrounding Areas, Central Mexico. 1:100 000 Scale Geological Map and Explanatory Text. Geological Society of America Map and Chart Series MCH089, 1–26.
  • Gomberg, J.S. & Masters, T.G. 1988. Waveform modelling using locked-mode synthetic and differential seismograms: application to determination of the structure of Mexico. Geophysical Journal 94, 193–218.
  • Gómez-Tuena, A., Langmuir, C.H., Goldstein, S.L., Straub, S.M. & Ortega-Gutiérrez, F. 2007b. Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt. Journal of Petrology 48, 537–562.
  • Gómez-Tuena, A., Orozco-Esquivel, T. & Ferrari, L. 2007a. Igneous petrogenesis of the Trans-Mexican Volcanic Belt. In: AlanizÁlvarez, S.A. & Nieto-Samaniego, A.F. (eds), Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico.
  • Geological Society of America Special Paper 442, 129–181. Green, T.H. 1994. Experimental studies of trace-element partitioning applicable to igneous petrogenesis: Sedona 16 years later. Chemical Geology 117, 1–16.
  • Guevara, M., Verma, S.P., Velasco-Tapia, F., Lozano-Santa Cruz, R. & Girón, P. 2005. Comparison of linear regression models for quantitative geochemical analysis: an example using X-Ray Fluorescence Spectrometry. Geostandards and Geoanalytical Research 29, 271–284.
  • Haggerty, S.E. 1991. Oxide mineralogy of the upper mantle. In: Lindsley, D.H. (ed), Oxide Minerals: Petrologic and Magnetic
  • Significance. Reviews in Mineralogy 25, 355–416. Haskin, L.A., Haskin, M.A., Frey, F.A. & Wildeman, T.R. 1968. Relative and absolute terrestrial abundances of the rare earths.
  • In: Ahrens, L.H. (ed), Origin and Distribution of the Elements. Pergamon Press, Oxford, 889 –912. Hawkesworth, C.J., Hergt, J.M., Ellam, R.M. & McDermott, F. 1991.
  • Element fluxes associated with subduction related magmatism. Royal Society of London Philosophical Transactions 335, 393– 40 Hawkesworth, C.J., O’Nions, R.K., Pankhurst, R.J., Hamilton, P.J. & Evensen, E.M. 1977. A geochemical study of island-arc and back-arc tholeiites from the Scotia Sea. Earth and Planetary Science Letters 36, 153 –162.
  • Hazlett, R.W. 1987. Geology of San Cristobal volcanic complex, Nicaragua. Journal of Volcanology and Geothermal Research 33, 223 –230.
  • Heinrich, W. & Besch, T. 1992. Thermal history of the upper mantle beneath a young back-arc extensional zone: ultramafic xenoliths from San Luis Potosí, central Mexico. Contributions to Mineralogy and Petrology 111, 126–142.
  • Henry, C.D. & Aranda-Gomez, J.J. 1992. The real southern Basin and Range: mid-to late Cenozoic extension in Mexico. Geology 20, 701–704.
  • Hofmann, A.W. & Feigenson, M.D. 1983. Case studies on the origin of basalt. I. Theory and reassessment of Grenada basalts. Contributions to Mineralogy and Petrology 84, 382–389.
  • Hoogewerff, J.A., van Bergen, M.J., Vroon, P.Z., Hertogen, J., Wordel, R., Sneyers, A., Nasution, A., Varekamp, J.C., Moens, H.L.E. & Mouchel, D. 1997. U-series, Sr-Nd-Pb isotope and traceelement systematics across an active island arc-continent collision zone: implications for element transfer at the slabwedge interface. Geochimica et Cosmochimica Acta 61, 1057– 10
  • Hsu, C.-N., Chen, J.-C. & Ho, K.-S. 2000. Geochemistry of Cenozoic volcanic rocks from Kirin Province, northeast China. Geochemical Journal 34, 33–58.
  • Husker, A. & Davis, P.M. 2009. Tomography and thermal state of the Cocos plate subduction beneath Mexico City. Journal of Geophysical Research 114, B04306, doi: 10.1029/2008JB006039.
  • Jarosewich, E., Nelen, J.A. & Norberg, J.A. 1980. Reference samples for electron microprobe analysis. Geostandards Newsletter 4, 43–
  • Johnson, C.A. & Harrison, C.G.A. 1990. Neotectonics in central Mexico. Physics of Earth and Planetary Interiors 64, 187–210.
  • Jording, A., Ferrari, L., Arzate, J. & Jödicke, H. 2000. Crustal variations and terrane boundaries in southern Mexico as imaged by magnetotelluric transfer functions. Tectonophysics 327, 1–13.
  • Jödicke, H., Jording, A., Ferrari, L., Arzate, J., Mezger, K. & Rüpke, L. 200 Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: implications for the generation of volcanism and subduction dynamics. Journal of Geophysical Research 111, B08102, doi: 10.1029/2005JB003739.
  • Kamenetsky, V.S., Crawford, A.J. & Meffre, S. 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology 42, 655–671.
  • Kay, S.M., Maksaev, V., Moscoso, R., Mpodozis, C. & Nasi, C. 1987. Probing the evolving Andean lithosphere: Mid-late Tertiary magmatism in Chile (29°–30°30’S) over the modern zone of subhorizontal subduction. Journal of Geophysical Research 92, 6173–6189.
  • Kearey, P., Klepeis, K.A. & Vine, F.J. 2009. Global Tectonics. WileyBlackwell, New York.
  • Keith, M. 2001. Evidence for a plate tectonics debate. Earth-Science Reviews 55, 235–336.
  • Kelemen, P.B. 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology 120, 1–19.
  • Kepezhinskas, P. 1995. Diverse shoshonite magma series in the Kamchatka arc: relationships between intra-arc extension and composition of alkaline magmas. In: Smellie, J.L. (ed), Volcanism Associated with Extension at Consuming Plate Margins. Geological Society Special Publication 81, 249–264.
  • Le Bas, M.J. 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology 41, 1467–1470.
  • Le Bas, M.J., LeMaitre, R., Streckeisen, A. & Zanettin, B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745–750.
  • Luhr, J.F. 1997. Extensional tectonics and the diverse primitive volcanic rocks in the western Mexican Volcanic Belt. Canadian Mineralogist 35, 473–500.
  • Luhr, J.F., Nelson, S.A., Allan, J.F. & Carmichael, I.S.E. 1985. Active rifting in southwestern Mexico: manifestations of an incipient eastward spreading-ridge jump. Geology 13, 54–57.
  • Luhr, J.F., Allan, J.F., Carmichael, I.S.E., Nelson, S.A. & Hasenaka, T. 19 Primitive calc-alkaline and alkaline rock types from the western Mexican Volcanic Belt. Journal of Geophysical Research 94, 4515–4530.
  • Márquez, A. & De Ignacio, C. 2002. Mineralogical and geochemical constraints for the origin and evolution of magmas in Sierra Chichinautzin, Central Mexican Volcanic Belt. Lithos 62, 35–
  • Márquez, A., Oyarzun, R., Doblas, M. & Verma, S.P. 1999a. Alkalic
  • (ocean-island basalt type) and calc-alkalic volcanism in the Mexican Volcanic Belt: a case for plume-related magmatism and propagating rifting at an active margin? Geology 27, 51–54. Márquez, A., Oyarzun, R., de Ignacio, C. & Doblas, M. 2001. Southward migration of volcanic activity in the central Mexican Volcanic Belt: asymmetric extension within a twolayer crustal stretching model. Journal of Volcanology and Geothermal Research 112, 175–187.
  • Márquez, A., Verma, S.P., Anguita, F., Oyarzun, R. & Brandle, J.L. 1999b. Tectonics and volcanism of Sierra Chichinautzin: extension at the front of the Central Trans-Mexican Volcanic belt. Journal of Volcanology and Geothermal Research 93, 125– 1
  • Martín del Pozzo, A.L. 1982. Monogenetic volcanism in Sierra Chichinautzin, Mexico. Bulletin Volcanologique 45, 9–24.
  • Martínez-Serrano, R.G., Schaaf, P., Solís-Pichardo, G., HernándezBernal, M.S., Hernández-Treviño, T., Morales-Contreras, J.J. & Macías, J.L. 2004. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango Volcanic Field, Mexico. Journal of Volcanology and Geothermal Research 138, 77–110.
  • Martinod, J., Husson, L., Roperch, P., Guillaume, B. & Espurt, N. 20 Horizontal subduction zones, convergence velocity and the building of the Andes. Earth and Planetary Science Letters 299, 299–309. McDonough, W.F. & Sun, S.-S. 1995. The composition of the Earth.
  • Chemical Geology 120, 223–253. Meriggi, L., Macías, J.L., Tommasini, S., Capra, L. & Conticelli, S. 200 Heterogeneous magmas of the Quaternary Sierra Chichinautzin volcanic field (central Mexico): the role of an amphibole-bearing mantle and magmatic evolution processes. Revista Mexicana de Ciencias Geológicas 25, 197–216. Meschede, M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology 56, 207–218.
  • Middlemost, E.A.K. 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology 77, 19–26.
  • Molina-Garza, R. & Urrutia-Fucugauchi, J. 1993. Deep crustal structure of central Mexico derived from interpretation of Bouger gravity anomaly data. Journal of Geodynamics 17, 181–201.
  • Molnar, P. & Sykes, L.R. 1969. Tectonics of the Caribbean and Middle
  • America regions from focal mechanisms and seismicity. Geological Society of America Bulletin 80, 1639–1684.
  • Moore, G., Marone, C., Carmichael, I.S.E. & Renne, P. 1994. Basaltic volcanism and extension near the intersection of the Sierra Madre volcanic province and the Mexican Volcanic Belt. Geological Society of America Bulletin 106, 383–394.
  • Mooser, F., Montiel, A. & Zuñiga, A. 1996. Nuevo mapa geológico de las cuencas de México, Toluca y Puebla. Estratigrafía, tectónica regional y aspectos geotérmicos. Internal Report, Comisión Federal de Electricidad, Mexico City.
  • Mora Alvarez, G., Caballero Miranda, C., Urrutia Fucugauchi, J. & Uchiumi, S. 1991. Southward migration of volcanic activity in the Sierra de las Cruces, basin of Mexico? – A preliminary K-Ar dating and paleomagnetic study. Geofísica Internacional 30, 61–70.
  • Morán-Zenteno, D.J., Alba-Aldave, L.A., Martínez-Serrano, R.G., Reyes-Salas, M.A., Corona-Esquivel, R. & Ángeles-García, S. 19 Stratigraphy, geochemistry and tectonic significance of the Tertiary volcanic sequence of the Taxco-Tilzapotla region, southern Mexico. Revista Mexicana de Ciencias Geológicas 15, 167–180. Mori, L., Gómez-Tuena, A., Schaaf, P., Goldstein, S.J., Pérez-Arvizu, O. & Solís-Pichardo, G. 2009. Lithospheric removal as a trigger for flood basalt magmatism in the Trans-Mexican Volcanic Belt. Journal of Petrology 50, 2157–2186.
  • Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta 38, 757–775.
  • Nelson, B.K. 1995. Fluid flow in subduction zones: evidence from Nd- and Sr-isotope variations in metabasalts of the Franciscan complex, California. Contributions to Mineralogy and Petrology 119, 247–262.
  • Nixon, G.T. 1988a. Petrology of younger andesites and dacites of Iztaccíhuatl volcano, Mexico: I. Disequilibrium phenocrysts assemblages as indicators of magma chamber processes. Journal of Petrology 29, 213–264.
  • Nixon, G.T. 1988b. Petrology of younger andesites and dacites of Iztaccíhuatl volcano, Mexico: II. Chemical stratigraphy, magma mixing, and the composition of basaltic magma influx. Journal of Petrology 29, 265–303.
  • Ormerod, D.S., Rogers, N.W. & Hawkesworth, C.J. 1991. Melting in the lithospheric mantle: inverse modelling of alkaliolivine basalts from the Big Pine Volcanic Field, California. Contributions to Mineralogy and Petrology 108, 305–317.
  • Ortega-Gutiérrez, F., Elías-Herrera, M. & Dávalos-Elizondo, M.G. 200 On the nature and role of the lower crust in the volcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region, southern and central Mexico. Revista Mexicana de Ciencias Geológicas 25, 346–364. Osete, M.L., Ruiz-Martínez, V.C., Caballero, C., Galindo, C., UrrutiaFucugauchi, J. & Tarling, D.H. 2000. Southward migration of continental volcanic activity in the Sierra de las Cruces, Mexico: paleomagnetic and radiometric evidence. Tectonophysics 318, 201–215.
  • Pacheco, J.F. & Singh, S.K. 2010. Seismicity and state of stress in Guerrero segment of the Mexican subduction zone. Journal of Geophysical Research 115, doi:10.1029/2009JB006453.
  • Pardo, M. & Suárez, G. 1995. Shape of the subducted Rivera and Cocos plates in southern Mexico: seismic and tectonic implications. Journal of Geophysical Research 100, 12357–12373.
  • Patchett, P.J. & Ruiz, J. 1987. Nd isotopic ages of crustal formation and metamorphism in the Precambrian of eastern and southern Mexico. Contributions to Mineralogy and Petrology 96, 523–528.
  • Pearce, J.A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. (ed), Andesites.
  • John Wiley & Sons, Chichester, 525–548. Pearce, J.A. & Cann, J.R. 1973. Tectonic setting of the basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290–300.
  • Pearce, J.A. & Peate, D.W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Science 23, 251–285.
  • Pérez-Campos, X., Kim, Y., Husker, A., Davis, P.M., Clayton, R.W., Iglesias, A., Pacheco, J.F., Singh, S.K., Manea, V.C. & Gurnis, M. 200 Horizontal subduction and truncation of the Cocos plate beneath central Mexico. Geophysical Research Letters 35, L1830
  • Petford, N. & Gallagher, K. 2001. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth and Planetary Science Letters 193, 483–499.
  • Polat, A., Frei, R., Fryer, B. & Appel, P.W.U. 2009. The origin of geochemical trends and Eoarchean (ca. 3700 Ma) zircons in
  • Mesoarchean (ca. 3075 Ma) ocelli-hosting pillow basalts, Ivisaartoq greenstone belt, SW Greenland: evidence for crustal contamination versus crustal recycling. Chemical Geology 268, 248–271.
  • Rajesh, H.M. 2007. The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: a case study from southern India. Contributions to Mineralogy and Petrology 154, 591–606.
  • Reagan, M.K. & Gill, J.B. 1989. Coexisting calcalkaline and high-niobium basalts from Turrialba volcano, Costa Rica: implications for residual titanites in arc magma sources. Journal of Geophysical Research 94, 4619–4633.
  • Righter, K., Chelsey, J.T. & Ruiz, J. 2002. Genesis of primitive, arctype basalt: constraints from Re, Os, and Cl on the depth of melting and role of fluids. Geology 30, 619–622.
  • Roberts, S.J. & Ruiz, J. 1989. Geochemistry of exposed granulite facies terrains and lower crustal xenoliths in Mexico. Journal of
  • Geophysical Research 94, 7961–7974.
  • Robin, C. 1982. Mexico. In: Thorpe, R.S. (ed), Andesites. John Wiley, Chichester.
  • Rodríguez Lara, V.C. 1997. Evolución del conjunto volcánico Guespalapa y del volcán Chichinautzin, Distrito FederalMorelos, México. BSc Thesis, ESIA-Instituto Politécnico Nacional, México, D.F. [unpublished].
  • Rollinson, H.R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical, Essex, England.
  • Rudnick, R.L. & Gao, S. 2003. Composition of the Continental Crust. In: Carlson, R.W., Holland, H.D. & Turekian, K.K. (eds), Treatise of Geochemistry. Elsevier, New York 3, 1–64.
  • Rudnick, R.L., McDonough, W.F. & O’Connell, R.J. 1998. Thermal structure, thickness and composition of continental lithosphere. Chemical Geology 145, 399–415.
  • Ruiz, J., Patchett, P.J. & Arculus, R.J. 1988a. Nd-Sr isotope composition of lower crustal xenoliths – evidence for the origin of midTertiary felsic volcanics in Mexico. Contributions to Mineralogy and Petrology 99, 36–43.
  • Ruiz, J., Patchett, P.J. & Ortega-Gutierrez, F. 1988b. Proterozoic and Phanerozoic basement terranes of Mexico from Nd isotopic studies. Geological Society of America Bulletin 100, 274–281.
  • Ryder, C.H., Gill, J.B., Tepley III, F., Ramos, F. & Reagan, M. 2006. Closed- to open-system differentiation at Arenal volcano (1968–2003). Journal of Volcanology and Geothermal Research 157, 75–93.
  • Sánchez-Rubio, G. 1984. Cenozoic Volcanism in the Toluca – Amealco Region, Central Mexico. MSc Thesis, University of London, London – United Kingdom [unpublished].
  • Schaaf, P., Heinrich, W. & Besch, T. 1994. Composition and SmNd isotopic data of the lower crust beneath San Luis Potosí, central Mexico: evidence from granulite-facies xenolith suite. Chemical Geology 118, 63–84.
  • Schaaf, P., Stimac, J., Siebe, C. & Macías, J.L. 2005. Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, Central Mexico. Journal of Petrology 46, 1243–1282.
  • Schellart, W.P. 2005. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge. Earth and Planetary Science Letters 231, 197–219.
  • Schellart, W.P. 2007. The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle. Tectonophysics 445, 363–372.
  • Shervais, J.W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101–
  • Sheth, H.C. 2007. ‘Large Igneous Provinces (LIPs)’: definition, recommended terminology, and a hierarchical classification. Earth Science Reviews 85, 117–124.
  • Sheth, H.C. 2008. Do major oxide tectonic discrimination diagrams work? Evaluating new log-ratio and discriminant-analysisbased diagrams with Indian Ocean mafic volcanics and Asian ophiolites. Terra Nova 20, 229–236.
  • Sheth, H., Torres-Alvarado, I.S. & Verma, S.P. 2000. Beyond subduction and plumes: A unified tectonic-petrogenetic model for the Mexican Volcanic Belt. International Geology Review 42, 1116–1132.
  • Shurbet, D.H. & Cebull, S.E. 1984. Tectonic interpretation of the Trans-Mexican Volcanic Belt. Tectonophysics 101, 159–165.
  • Siebe, C., Rodríguez-Lara, V., Schaaf, P. & Abrams, M. 2004. Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico City. Journal of Volcanology and Geothermal Research 130, 197–226.
  • Slovenec, D., Lugović, B. & Vlahović, I. 2010. Geochemistry, petrology and tectonomagmatic significance of basaltic rocks from the ophiolite mélange at the NW external-internal Dinarides junction (Croatia). Geologica Carpathica 61, 273–292.
  • Srivastava, R.K., Chandra, R. & Shastry, A. 2004. High-Ti type N-MORB parentage of basalts from the south Andaman ophiolite suite, India. Proceedings of Indian Academy of Sciences
  • (Earth and Planetary Sciences) 113, 605–618. Stock, J.M. 1996. Plate tectonics. Encyclopedia of Applied Physics 14, 273–294.
  • Straub, S.M. & Martin Del Pozzo, A.L. 2001. The significance of phenocryst diversity in tephra from recent eruptions at Popocatepetl volcano (central Mexico). Contributions to Mineralogy and Petrology 140, 487–510.
  • Sun, S.-S. & McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. & Norry, M.J.
  • (eds), Magmatism in the Ocean Basins. Geological Society Special Publication 42, 313–345. Suter, M., Quintero, O. & Johnson, C.A. 1992. Active faults and the state of stress in the central part of the Trans-Mexican Volcanic
  • Belt, Mexico: 1. The Venta de Bravo fault. Journal of Geophysical Research 97, 11983–11993.
  • Suter, M., Quintero, O., López, M., Aguirre, G. & Farrrar, E. 1995.
  • The Acambay graben: active intra-arc extension in the TransMexican volcanic belt, Mexico. Tectonics 14, 1245–1262.
  • Swinamer, R.T. 1989. The Geomorphology, Petrography, Geochemistry and Petrogenesis of the Volcanic Rocks in the Sierra de Chichinautzin, Mexico. MSc Thesis, Queen’s University, Kingston, Ontario-Canada [unpublished].
  • Tatsumi, Y. & Eggins, S. 1993. Subduction Zone Magmatism. Blackwell Science, Ann Arbor.
  • Taylor, S.R. & McLennan, S.M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford.
  • Taylor, R.N. & Nesbitt, R.W. 1998. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth and Planetary Science Letters 164, 79–98.
  • Thirwall, M.F., Graham, A.M., Arculus, R.J., Harmon, R.S. & Macpherson, C.G. 1997. Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles. Geochimica and Cosmochimica Acta 60, 4785–4810.
  • Torres-Alvarado, I.S., Verma, S.P., Palacios-Berruete, H., Guevara, M. & González-Castillo, O.Y. 2003. DC_Base: a database system to manage Nernst distribution coefficients and its application to partial melting modeling. Computers & Geosciences 29, 1191– 11
  • UNAM & CENAPRED Seismology Group 1995. The Milpa Alta earthquake of January 21, 1995. Geofísica Internacional 34, 355–362.
  • Valdés, C.M., Mooney, W., Singh, K., Meyer, S., Lomnitz, C., Luetgert, J., Hesley, C., Lewis, B. & Mena, M. 1986. Crustal structure of Oaxaca, México, from seismic refraction measurements. Bulletin of Seismological Society of America 76, 547–563.
  • Vázquez-Sánchez, E. & Jaimes-Palomera, L.R. 1989. Geología de la
  • Cuenca de México. Geofísica Internacional 28, 133–189. Velasco-Tapia, F. & Verma, S.P. 2001a. Estado actual de la investigación geoquímica en el campo monogenético de la Sierra de Chichinautzin: Análisis de información y perspectivas. Revista Mexicana de Ciencias Geológicas 18, 1–36.
  • Velasco-Tapia, F. & Verma, S.P. 2001b. First partial melting inversion model for a rift-related origin of the Sierra de Chichinautzin Volcanic Field, Central Mexican Volcanic Belt. International Geology Review 43, 788–817.
  • Verma, S.P. 1992. Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr-Nd-Pb isotopic systematics in Mid-Ocean Ridge Basalt. Geochemical Journal 26, 159–177.
  • Verma, S.P. 1999. Geochemistry of evolved magmas and their relationship to subduction un-related mafic volcanism at the volcanic front of the Central Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research 93, 151–171.
  • Verma, S.P. 2000. Geochemistry of subducting Cocos plate and the origin of subduction-unrelated mafic volcanism at the volcanic front of the Central Mexican Volcanic Belt (Mexico). In: Delgado-Granados, G., Aguirre-Díaz, G. & Stock, J.M. (eds), Cenozoic Tectonics and Volcanism of Mexico. Geological Society of America Special Paper 334, 195–222.
  • Verma, S.P. 2002. Absence of Cocos plate subduction-related mafic volcanism in southern Mexico: a unique case on Earth? Geology 30, 1095–1098.
  • Verma, S.P. 2004. Solely extension-related origin of the eastern to west-central Mexican Volcanic Belt (Mexico) from partial melting inversion model. Current Science 86, 713–719.
  • Verma, S.P. 2006. Extension-related origin of magmas from a garnetbearing source in the Los Tuxtlas volcanic field, Mexico. International Journal of Earth Sciences 95, 871–901.
  • Verma, S.P. 2009. Continental rift setting for the central part of the Mexican Volcanic Belt: A statistical approach. Open Geology Journal 3, 8–29.
  • Verma, S.P. 2010. Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams. Turkish Journal of Earth Sciences 19, 239–265.
  • Verma, S.P. & Agrawal, S. 2011. New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Revista Mexicana de Ciencias Geológicas 28, 24–44.
  • Verma, S.P. & Díaz-González, L. 2012. Application of the discordant outlier detection and separation system in the geosciences. International Geology Review, DOI:10.1080/00206814.2011.5 6940
  • Verma, S.P., Guevara, M. & Agrawal, S. 2006. Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. Journal of Earth System Science 115, 485–528.
  • Verma, S.P., Torres-Alvarado, I.S. & Sotelo-Rodríguez, Z.T. 200 SINCLAS: standard igneous norm and volcanic rock classification system. Computer & Geosciences 28, 711–715. Verma, S.P., Verma, S.K., Pandarinath, K. & Rivera-Gómez, M.A. 20 Evaluation of recent tectonomagmatic discrimination diagrams and their application to the origin of basic magmas in Southern Mexico and Central America. Pure and Applied Geophysics, 168, 1501–1525.
  • Walker, J.A., Carr, M.J., Feigenson, M.D. & Kalamarides, R.I. 1990.
  • The petrogenetic significance of interstratified high- and lowTi basalts in central Nicaragua. Journal of Petrology 31, 1141– 11
  • Walker, J.A., Patino, L.C., Carr, M.J. & Feigenson, M.D. 2001. Slab control over HFSE depletions in central Nicaragua. Earth and Planetary Science Letters 192, 533–543.
  • Wallace, P. & Carmichael, I.S.E. 1999. Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contributions to Mineralogy and Petrology 135, 291–314.
  • White, W.M. & Dupré, B. 1986. Sediment subduction and magma genesis in the Lesser Antilles: isotopic and trace element constraints. Journal of Geophysical Research 91, 5927–5941.
  • Xu, J.F., Shinjo, R., Defant, M.J., Wang, Q. & Rapp, R.P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 30, 1111–1114.
  • Yavuz, F. 1999. A revised program for microprobe-derived amphibole analyses using IMA rules. Computers & Geosciences 25, 909– 9
  • Yavuz, F. 2001. PYROX: A computer program for the IMA pyroxene classification and calculation scheme. Computer & Geosciences 27, 97–107.
  • Yogodzinski, G.M., Volynets, O.N., Koloskov, A.V., Seliverstov, N.I. & Matvenkov, V.V. 1994. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip volcano, far western Aleutians. Journal of Petrology 35, 163–204.
  • Zhang, Z., Zhao, G., Santosh, M., Wang, J., Dong, X. & Shen, K. 2010.
  • Late Cretaceous charnockite with adakitic affinities form the Gangdese batholith, southeastern Tibet: Evidence for NeoTethyan mid-ocean ridge subduction? Gondwana Research 17, 615–631. Zindler, A. & Hart, S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Science 14, 493 –571.
  • Appendix A1. New major-element data for SCN volcanic rocks. Sample CHI20 CHI56 CHI18 CHI59 CHI64 CHI70 CHI69 CHI19 CHI42 CHI16 Sample S Barbara Cima Atlapulco Jumiltepec Tetillas Pelagatos Agua Pehualtepec Jumento Santa Fe Locality 18°88’ 19°033’ 19°98’ 18°50’ 18° 50’ 19° 000’ 19° 00.50’ 19° 07’ 19°16’ 19° 21’ Latitude (°N): 98°42’ 99°50’ 99°75’ 99°83’ 99° 000’ 98° 99’ 98° 50’ 99° 17’ 99°09’ 99° 20’ Longitude (ªW): 1 1 1 1 1 1 1 2 1 1 Analytical method BA BA BTA, sho BA BA BA BA BA BA BA Rock type M M HB1 HMI HMI HMI E1 E1 DISQ E1 Major elements (% m/m; original composition) SiO 2 650 110 320 960 630 100 010 640 250 240 TiO 2 534 459 059 479 0.920 0.770 330 160 0.980 300 Al 2 O 3 730 580 310 690 000 490 710 250 160 070 Fe 2 O 3 t 810 000 800 960 990 580 680 100 970 910 MnO 0.134 0.134 0.129 0.128 0.120 0.120 0.120 0.130 0.110 0.120 MgO 760 850 300 420 510 500 980 390 040 250 CaO 090 650 770 460 900 700 120 600 320 330 Na 2 O 620 910 530 580 500 270 700 910 040 880 K 2 O 230 080 180 0.790 0.980 000 240 170 540 270 P 2 O 0.430 0.280 0.710 0.390 0.190 0.740 0.390 0.250 0.370 0.360 LOI 0.190 0.030 0.140 110 0.160 0.150 0.570 0.290 0.470 0.180 Major elements (% m/m; adjusted composition) (SiO 2 ) adj 018 455 576 414 644 815 296 618 679 738 (Na 2 O) adj 646 936 547 611 567 314 788 908 071 915 (K 2 O) adj 239 087 191 0.797 0.999 013 270 170 552 281 Analytical Method: (1) ICP-OES (‘4LithoRes’ methodology; ActLabs, Inc., Canada); (2) XRF (Guevara et al. 2005; Instituto de Geología, UNAM, Mexico). Rock-types are presented according to total alkalis versus silica diagram (Le Bas et al. 1986; Le Bas 2000) on an anhydrous 100% adjusted basis and Fe 2 O 3 /FeO ratio after Middlemost (1989) using the SINCLAS computer program (Verma et al. 2002). Group subdivision based in phenocryst assemblage and geochemical composition: (a) HMI– high-magnesian intermediate magmas; DISQ– evolved magmas with a ol + opx ± cpx ± plg assemblage; (b) E2– evolved magmas with a opx ± cpx + plg assemblage; and (c) E3 – evolved magmas with textural evidences of mineralogical disequilibrium, such as coexisting olivine and quartz, phenocrysts of plagioclase and pyroxene with oscillatory or more complex zoning and twinning, the presence of biotite and hornblende phenocrysts, and quartz xenocrysts with pyroxene reaction rims.
  • Figure code Total no. of samples (%) Number of samples (%) discriminated as Diagram type IAB (1) CRB+OIB (2+3) CRB (2) OIB (3) MORB (4) SCN VGA2006 Fig_1234m2 28 (100) 2 (7) 26 (93) Fig_123m2 28 (100) 28 (100) Fig_124m2 28 (100) 28 (100) Fig_134m2 28 (100) 2 5 21 Inapplicable Fig_234m2 28 (100) 28 (100) Before and after DODESSYS
  • SCN VA2011 Fig_1234t2 4 2 2 Fig_123t2 4 4 Fig_124t2 4 3 1 Fig_134t2 4 4 Inapplicable Fig_234t2 4 3 1
  • CAVA VGA2006 Fig_1234m2 84 (100) 67 (80) 3 (3) 14 (17) Fig_123m2 84 (100) 64 (76) 12 (14) 8 (10) Fig_124m2 84 (100) 66 (79) 5 (6) 13 (15) Fig_134m2 84 (100) 67 (80) 2 (2) 15 (18) Fig_234m2 84 (100) 61 23 Inapplicable Before DODESSYS
  • CAVA VA2011 Fig_1234t2 41 (100) 26 (64) 1 (2) 14 (34) Fig_123t2 41 (100) 35 (85) 6 (15) Fig_124t2 41 (100) 26 (64) 1 (2) 14 (34) Fig_134t2 41 (100) 24 (59) 1 (2) 16 (39) Fig_234t2 41 (100) 2 (5) 39 Inapplicable After DODESSYS
  • CAVA VA2011 Fig_1234t2 38 (100) 24 (63) 1 (3) 13 (34) Fig_123t2 38 (100) 33 (87) 5 (13) Fig_124t2 38 (100) 24 (63) 1 (3) 13 (34) Fig_134t2 38 (100) 22 (58) 1 (3) 15 (39) Fig_234t2 38 (100) 1 37 Inapplicable
  • In Figure code, numbers 1 to 4 refer to the tectonic settings (1–IAB, 2–CRB, 3–OIB, 4–MORB); m2 and t2 are for, respectively, the diagrams proposed by Verma et al. (2006) and Verma & Agrawal (2011). Computer program DODESSYS is by Verma & Díaz-González (2012). from the SCN, using La as a reference element (the most highly incompatible element). Elem (i) (C La – C i ) E diagram (C La – C La /C i ) E diagram n m i se mi I i se Ii r P c(r,n) m i se mi I i se Ii r P c(r,n) Ce 24 0.78 0.07 2 5 0.920 < 0.0001 0.0044 0.0024 0.96 0.08 0.358 0.0860 Nd 15 0.55 0.05 7 0 0.950 < 0.0001 0.0042 0.0039 49 0.13 0.284 0.3044* Sm 15 0.308 0.044 2 5 0.891 < 0.0001 0.016 0.006 72 0.20 0.625 0.0127 Eu 17 0.196 0.034 7 2 0.827 < 0.0001 0.034 0.007 56 0.22 0.800 < 0.0001 Tb 17 0.158 0.030 5 0 0.805 < 0.0001 0.040 0.013 45 0.44 0.622 0.0080 Yb 15 0.123 0.025 3 0.8 0.809 < 0.0001 0.044 0.022 7 0.7 0.488 0.0647 Lu 15 0.119 0.031 9 1 0.724 0.0023 0.053 0.031 0 0 0.421 0.1178 Ba 26 12 0.26 10 9 0.667 0.0002 0.003 0.009 0.63 0.13 0.155 0.4480* Hf 14 0.23 0.06 2 8 0.762 0.0015 0.030 0.007 09 0.23 0.765 0.0014 Nb 12 0.45 0.16 14 6 0.660 0.0196 0.017 0.007 0.55 0.25 0.631 0.0277 Rb 23 0.46 0.14 20 5 0.568 0.0047 0.0134 0.0044 0.51 0.16 0.549 0.0066 Sr 26 0.06 0.06 7 6 0.200 0.3267* 0.0361 0.0029 0.10 0.09 0.9327 < 0.0001 Ta 14 0.62 0.25 9 8 0.584 0.0283 0.009 0.008 0.86 0.30 0.2542 0.3806* Th 14 0.41 0.16 11 5 0.607 0.0214 0.016 0.007 0.81 0.23 0.550 0.0413 U 13 0.80 0.35 8 11 0.570 0.0417 0.0010 0.0013 0.98 0.43 0.010 0.9689* Y 24 0.047 0.014 5 0.5 0.580 0.0030 0.104 0.010 21 0.35 0.910 < 0.0001 Zr 24 0.39 0.06 3 1 0.806 < 0.0001 0.018 0.005 0.96 0.15 0.632 0.0005 Ti 26 -0.004 0.017 8 0.6 0.049 0.8010* 0.117 0.007 -0.04 0.26 0.955 < 0.0001 P 26 7 0.5 39 17 0.732 < 0.0001 0.0024 0.0011 0.186 0.037 0.410 0.0371 K 26 0.60 0.18 39 6 0.561 0.0029 0.0102 0.0017 0.22 0.06 0.783 < 0.0001 n= number of data pairs considered in the trace-element diagrams; m i = slope of the linear model; I i = intercept value of the linear model; r= correlation coefficient of the linear model; P c(r,n) = probability that the variables are not correlated (i.e. 1 - P c(r,n) is the probability that the two variables are correlated); se mi = standard error for slope in (C La – C i ) E or (C La – C La /C i ) E diagrams; se Ii = standard error for intercept in (C La – C i ) E or (C La – C La /C i ) E diagrams; subscript E refers to normalisation with respect to Silicate Earth values. All concentration data are normalised against Silicate Earth values (in mg.g -1 ) by McDonough & Sun (1995): La= 0.648; Ce= 1.675; Pr= 0.254; Nd= 1.250; Sm= 0.406; Eu= 0.154; Gd= 0.544; Tb= 0.099; Dy= 0.674; Ho= 0.149; Er= 0.438; Tm= 0.068; Yb= 0.441; Lu= 0.0675; Ba= 6.600; Cs= 0.021;
  • Hf= 0.283; Nb= 0.658; Pb= 0.150; Rb= 0.600; Sr= 19.9; Ta= 0.037; Th= 0.0795; U= 0.0203; Y= 4.30; Zr= 10.5; Ti= 1205; P= 90; K= 240.
  • Asterisk “*” denotes statistically invalid correlations even at the 95% confidence level (italicized P c(r,n) values). from the CAVA, using La as a reference element (the most highly incompatible element). Elem (i) (C La – C i ) E diagram (C La – C La /C i ) E diagram n m i se mi I i se Ii r P c(r,n) m i se mi I i se Ii r P c(r,n) Ce 20 0.651 0.026 48 0.43 0.986 < 0.0001 0.0133 0.0019 0.900 0.031 0.860 Nd 20 0.440 0.017 69 0.27 0.987 < 0.0001 0.0275 0.0028 0.83 0.05 0.920 Sm 20 0.224 0.019 37 0.32 0.940 < 0.0001 0.0584 0.0038 0.77 0.06 0.964 Eu 20 0.198 0.014 40 0.24 0.955 < 0.0001 0.063 0.005 0.78 0.08 0.948 Gd 20 0.165 0.014 52 0.23 0.942 0.073 0.005 0.75 0.08 0.964 Dy 20 0.135 0.015 70 0.25 0.904 0.091 0.008 0.90 0.14 0.934 Er 20 0.150 0.017 96 0.28 0.904 0.089 0.011 19 0.18 0.890 Yb 20 0.100 0.009 74 0.15 0.934 < 0.0001 0.120 0.009 25 0.15 0.949 Ba 20 0.46 0.28 29 5 0.364 0.1152* 0.0209 0.0021 0.100 0.035 0.918 0.0111 Cs 12 0.007 0.10 8 0 0.020 0.9468* 0.151 0.038 3 0.8 0.766 0.1091 Hf 12 0.36 0.05 2 0.7 0.928 0.0011 0.036 0.012 03 0.19 0.687 0.0135 Nb 20 46 0.14 -2 4 0.922 0.3728 0.008 0.011 18 0.19 0.152 0.5230* Pb 13 0.31 0.08 6 5 0.762 0.0020 0.0394 0.0034 0.33 0.07 0.961 0.0005 Rb 20 0.45 0.10 8 6 0.733 0.0002 0.024 0.005 0.61 0.09 0.698 Sr 20 0.49 0.07 9 1 0.871 0.0260 0.0015 0.220 0.025 0.970 Th 13 0.60 0.05 3 0 0.959 0.2549 0.003 0.007 44 0.14 0.125 0.6838* U 13 0.69 0.18 6 5 0.756 0.0030 0.014 0.005 0.54 0.10 0.06 0.0184 Y 20 0.198 0.014 82 0.24 0.957 0.066 0.009 24 0.14 0.873 Zr 19 0.53 0.05 07 0.8 0.941 0.0160 0.015 0.012 23 0.20 0.301 0.2098* Ti 20 0.140 0.026 84 0.42 0.788 0.019 0.11 0 9 0.373 0.1053* P 20 11 0.07 0.7 2 0.989 0.6057* 0.0001 0.0005 0.484 0.027 0.088 0.7119* K 20 18 0.16 2 7 0.977 0.0013 0.0023 0.0008 0.203 0.013 0.576
  • For the explanation of variables and symbols see Appendix A14.