Generation of collision-induced Early to Middle Miocene adakitic magmas in Pertek (Tunceli) area from Eastern Anatolia postsubductional setting, Turkey
Generation of collision-induced Early to Middle Miocene adakitic magmas in Pertek (Tunceli) area from Eastern Anatolia postsubductional setting, Turkey
Early to Middle Miocene andesite-dacite porphyries are well exposed to the Pertek area of Tunceli, Eastern Anatolia, and represent an example of adakite-like magma generation in Eastern Anatolia (postsubductional) collisional setting. Mineral associations in these porphyries are composed of plagioclase (oligoclase-andesine-labradorite), amphibole (pargasite-ferropargasite), biotite, rare quartz, K-feldspar, and minor Fe-Ti oxides. Geochemically they are high-K calc-alkaline in nature and characterized by high SiO2 (>62 wt.%), Al2 O3 (mostly >16 wt.%), Na2 O/K2 O ratio (1.3–1.7), and Sr (generally >400 ppm) contents. Volcanic rocks display depletion in HFSEs, Nb, Ta, and Ti, and slight negative Eu anomaly; have low HREEs, Y (
___
- Açlan M, Altun Y (2018). Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): an indication for collision between Arabian and Eurasian plates. Journal of African Earth Sciences 142: 1–11.
- Agostini S, Doglioni C, Innocenti F, Manetti P, Tonarini S et al. (2007). The transition from orogenic to intraplate Neogene magmatism in Western Anatolia and Aegean area. In: Beccaluva L, Bianchini G, Wilson M (editors). Cenozoic Volcanism in the Mediterranean Area. Geological Society of American Special Paper 418: 1–15.
- Agostini S, Doglioni C, Innocenti F, Manetti P, Tonarini S (2010). On the geodynamics of the Aegean rift. Tectonophysics 488: 7–21.
- Agostini S, Savaşçın MY, Di Giuseppe P, Di Stefano F, Karaoğlu Ö et al. (2019). Neogene volcanism in Elazığ-Tunceli area (eastern Anatolia): geochronological and petrological constraints. Italian Journal of Geosciences 138: 435-455.
- Aksoy E, Türkmen İ, Turan M (2005). Tectonics and sedimentation in convergent margin basins: an example from the Tertiary Elazığ basin, Eastern Turkey. Journal of Asian Earth Sciences 25: 459–472.
- Aktağ A, Öztüfekçi Önal A, Sayit K (2019). Geochemistry of the postcollisional Miocene mafic Tunceli Volcanics, Eastern Turkey: Implications for the nature of the mantle source and melting systematics. Geochemistry 79: 113-129.
- Alonso-Perez R, Müntener O, Ulmer P (2009). Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contributions to Mineralogy and Petrology 157: 541–558.
- Anders E, Grevesse N (1989). Abundances of the elements: meteoric and solar. Geochimica et Cosmochimica Acta 53: 197-214.
- Atherton MP, Petford N (1993). Generation of sodium-rich magmas from the newly underplated basaltic crust. Nature 362: 144–146.
- Azizi H, Asahara Y, Tsuboi M, Takemura K, Razyani S (2014). The role of the heterogenetic mantle in the genesis of adakites northeast of Sanandaj, northwestern Iran. Geochemistry 74 (1): 87-97.
- Azizi H, Stern R, Topuz G, Asahara Y, Moghadam HS (2019). Late Paleocene adakitic granitoid from NW Iran and comparison with adakites in the NE Turkey: Adakitic melt generation in the normal continental crust. Lithos 346 (347): 105151.
- Azizi H, Daneshvar N, Mohammadi A, Asahara Y, Whattam SA et al. (2021). Early Miocene post-collision andesite in the Takab area, northwest Iran. Journal of Petrology, egab022. doi: 10.1093/ petrology/egab022
- Barazangi M (1989). Continental collision zones: Seismotectonics and crustal structure. In: James DE (editor). The encyclopedia of solid earth geophysics: Van Nostrand Reinhold Company, New York, pp. 58-75.
- Bernard A, Demaiffe D, Mattielli N, Punongbayan RS (1991). Anhydrite-bearing pumices from Mount Pinatubo: further evidence for the existence of sulfur-rich silicic magmas. Nature 354: 139–140.
- Bernard A, Knittel U, Weber B, Weis D, Albrecht A et al. (1996). Petrology and geochemistry of the 1991 eruption products of Mount Pinatubo (Luzon, Philippines). In: Newhall CG and Punongbayan RS (editors). Fire and Mud. Eruptions and Lahars of Mount Pinatubo, Philippines. Seattle: University of Washington Press, pp. 767–798.
- Bottrill AD, Van Hunen J, Allen MB (2012). Insight into collision zone dynamics from topography: numerical modelling results and observations. Solid Earth 3: 387-399.
- Bullen TD, Clynne MA (1990). Trace element and isotopic constraints on magmatic evolution at Lassen volcanic center. Journal of Geophysical Research 95: 19671–19691.
- Castillo RP (2006). An overview of adakite petrogenesis. Chinese Science Bulletin 51: 257–268.
- Castillo PR (2012). Adakite petrogenesis. Lithos 13: 304-316.
- Castillo PR, Janney PE, Solidum RU (1999). Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology 134: 33-51.
- Cavazza W, Cattò S, Zattin M, Okay AI, Reiners P (2018). Thermochronology of the Miocene Arabia-Eurasia collision zone of southeastern Turkey: Geosphere 14: 2277–2293.
- Class C, Miller DM, Goldstein SL, Langmuir CH (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochem Geophys Geosyst 1999GC000010.
- Chung SL, Liu D, Ji J, Chu MF, Lee HY et al. (2003). Adakites from continental collision zones: melting of the thickened lower crust beneath southern Tibet. Geology 31: 1021–1024.
- Çimen O (2020). Geochemical characteristics of the adakite-like Dodurga Pluton (Central Pontides, N Turkey): Implications for Middle Triassic continental arc magmatism in southern Black Sea region. International Journal of Earth Sciences (Geologische Rundschau) 109: 809–829.
- Çoban H (2007). Basalt magma genesis and fractionation in collision-and extension-related provinces: a comparison between eastern, central and western Anatolia. Earth-Science Reviews 80: 219-238.
- Çoban H, Caran Ş, Kumral M, Karslı O, İmamoğlu Ş (2007). Adakitelike, A-type and OIB-like magmas from Anatolia-Arabian post-collisional settings. Asia Oceania Geosciences Society 4. Annual Meeting, Bangkok. 253.
- Çoban H, Karslı O, Caran Ş, Yılmaz K (2020). Sediment-derived melt-related metasomatized mantle wedge as a source of post-subduction Quaternary adakitic porphyries associated with absarokite-shoshonite from the Karadağ stratovolcano (Karaman, Central Anatolia, Turkey). Journal of Asian Earth Sciences 196-1.
- Çolakoğlu A R, Arehart GB (2010). The petrogenesis of Sarıcimen (Caldıran-Van) quartz monzodiorite: Implication for initiation of magmatism (late Medial Miocene) in the east Anatolian collision zone, Turkey. Lithos 119 (3): 607–620.
- Defant M J, Drummond MS (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347: 662-665.
- Defant M, Kepezhinskas P (2001). Evidence suggests slab melting in arc magmas. Eos Transactions American Geophysical Union 82: 67-70.
- Deng C, Sun G, Sun D, Huang H, Zhang J et al. (2018). Origin of C type adakite magmas in the NE Xing’an block, NE China and tectonic implication. Acta Geochimica 37: 281–294.
- Di Giuseppe P, Agostini S, Lustrino M, Karaoğlu Ö, Savaşçın MY et al. (2017). Transition from compression to strike-slip tectonics revealed by Miocene-Pleistocene volcanism west of the Karlıova Triple Junction (East Anatolia). Journal of Petrology 58 (10): 2055-2087.
- Di Giuseppe P, Agostini S, Di Vincenzo G, Manetti P, Savaşçın MY et al. (2021). From subduction to strike slip-related volcanism: insights from Sr, Nd, and Pb isotopes and geochronology of lavas from Sivas–Malatya region, Central Eastern Anatolia. International Journal of Earth Sciences 110: 849–874. doi: 10.1007/s00531-021-01995-0
- Doglioni C, Agostini S, Crespi M, Innocenti F, Manetti P et al. (2002). On the extension in western Anatolia and the Aegean sea. Journal of the Virtual Explorer 8: 169-184.
- Ekici T, Alpaslan M, Parlak O, Ucurum A (2009). Geochemistry of the Middle Miocene collision-related Yamadaği (Eastern Anatolia) calc-alkaline volcanics, Turkey. Turkish Journal of Earth Sciences 18: 511–528.
- Ekici T (2016). Collision-related slab break-off volcanism in the Eastern Anatolia, Kepez volcanic complex (Turkey). Geodinamica Acta 28 (3): 223-239.
- Ekici T, Macpherson CG (2019). Convergence-aligned foreland magmatism in the Arabia-Anatolia Collision: geochronological evidence from the Karacadağ Volcanic Complex, south-east Turkey. Turkish Journal of Earth Sciences 28: 719-733
- Eyüboğlu Y, Santosh M, Chung SL (2011a). Crystal fractionation of adakitic magmas in the crust–mantle transition zone: petrology, geochemistry, and U–Pb zircon chronology of the Seme adakites, eastern Pontides, NE Turkey. Lithos 121: 151–166.
- Eyüboğlu Y, Santosh M, Chung SL (2011b). Petrochemistry and U-Pb zircon ages of adakitic intrusions from the Pulur Massif (Eastern Pontides, NE Turkey): Implications for slab rollback and ridge subduction associated with Cenozoic convergent tectonics in the Eastern Mediterranean. Journal of Geology 119: 394–417.
- Eyüboğlu Y, Chung S, Santosh M, Dudas FO, Akaryalı E (2011c). Transition from shoshonitic to adakitic magmatism in the eastern Pontides, NE Turkey: Implications for slab window melting. Gondwana Research 19 (2): 413-429.
- Eyüboğlu Y, Santosh M, Yi K, Bektaş O, Kwon S (2012). Discovery of Miocene adakitic dacite from the Eastern Pontides Belt and revised geodynamic model for the late Cenozoic Evolution of the eastern Mediterranean region. Lithos 146 (147): 218-232.
- Göncüoğlu MC (2010). Introduction to the geology of Turkey: Geodynamıc evolution of the pre-Alpine and Alpine terranes. Middle East Technical University pp. 69.
- Guidotti CV (1984). Micas in metamorphic rocks. In: Bailey SW (ed.) Micas. Reviews in Mineralogy, Mineralogical Society of America 13: 357–468.
- Guo JH, Chen FK, Zhang XM, Siebel W, Zhai MG (2005). Evolution of syn-to post-collisional magmatism from north Sulu UHP belt, eastern China: zircon U–Pb geochronology. Acta Petrologica Sinica 4: 1281–1301 (in Chinese with English abstract).
- Guo Z, Wilson M, Liu J (2007). Post-collisional adakites in south Tibet: Products of partial melting of the subduction-modified lower crust. Lithos 96: 205–224.
- Guo F, Fan W, Li C, Gao X, Miao L (2009). Early Cretaceous highly positive -Nd felsic volcanic rocks from the Hinggan mountains, NE China: origin and implications for Phanerozoic crustal growth. International Journal of Earth Science 98: 1395–1411.
- Gülen L (1984). Sr, Nd, Pd isotope and trace elements geochemistry of calc-alkaline and alkaline volcanics, eastern Turkey. Ph.D. Massachusetts Institute of Technology, Cambridge.
- Gülyüz E, Durak H, Özkaptan M, Krijgsman W (2020). Paleomagnetic constraints on the early Miocene closure of the southern NeoTethys (Van region; East Anatolia): Inferences for the timing of Eurasia-Arabia collision. Global and Planetary Change 185: 103089.
- Hawkesworth CJ, Turner SP, McDermott F, Peate DW, Van Calsteren P (1997). U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust, Science 276: 551–555.
- Hawthorne FC (1983). The crystal chemistry of the amphiboles. Canadian Mineralogist 21: 173-480.
- Helvacı C, Ersoy Y, Sözbilir H, Erkül F, Sümer Ö et al. (2009). Geochemistry and 40Ar/39Ar geochronology of Miocene volcanic rocks from the Karaburun Peninsula: Implications for amphibole-bearing lithospheric mantle source, Western Anatolia. Journal of Volcanology and Geothermal Research 185: 181-202.
- Herece Eİ, Acar Ş (2016). Upper Cretaceous-Tertiary geology and stratigraphy of Pertek and its vicinity (Tunceli, Turkey). Bulletin of the Mineral Research and Exploration 153: 1-44.
- Huang F, Chen L, Wu Z, Wang W (2013). First-principles calculations of equilibrium Mg isotope fractionations between garnet, clinopyroxene, orthopyroxene, and olivine: Implications for Mg isotope thermometry. Earth and Planetary Science Letters 367: 61–70.
- Innocenti F, Mazzuoli R, Pasquare G, Radicati Di Brozolo F et al. (1976). Evolution of the volcanism in the area of interaction between the Arabian, Anatolian and Iranian plates (lake Van, Eastern Turkey). Journal of Volcanology Geothermal Research 1: 103-112.
- Innocenti F, Mazzuoli R, Pasquar G, Radicati Di Brozolo F et al. (1982). Tertiary and Quaternary volcanism of the Erzurum-Kars area (Eastern Turkey): Geochronological data and geodynamic evolution. Journal of Volcanology Geothermal Research 13: 223- 240.
- Innocenti F, Agostini S, Di Vincenzo G, Doglioni C, Manetti P et al. (2005). Neogene and Quaternary volcanism in Western Anatolia: Magma sources and geodynamic evolution. Marine Geology 221: 397-421.
- Kaban MK, Petrunin AG, El Khrepy S, Al-Arifi N (2018). Diverse continental subduction scenarios along the ArabiaEurasiacollision zone. Geophysical Research Letters 45: 6898– 6906.
- Kadıoğlu YK, Dilek Y (2010). Structure and geochemistry of the adakitic Horoz granitoid, Bolkar Mountains, south-central Turkey, and its tectonomagmatic evolution. International Geology Review 52: 505–535.
- Kamvong T, Meffre S, Maas R, Stein H, Lai CK (2014). Adakites in the Truong Son and Loei fold belts, Thailand and Laos: genesis and implications for geodynamics and metallogeny. Gondwana Research 26: 165–184.
- Karadenizli L, Varol BE, Saraç G, Gedik F (2016). Late eocene-early miocene palaeogeographic evolution of central Eastern Anatolian basins, the closure of the neo-tethys ocean and continental collision. Journal Geological Society of India 88: 773-798.
- Karaoğlu Ö, Helvacı C, Ersoy Y (2010). Petrogenesis and 40Ar/39Ar geochronology of the volcanic rocks of the Uşak-Güre basin, western Türkiye. Lithos 119/3–4: 193–210.
- Karaoğlu Ö, Selçuk AS, Gudmundsson A (2017). Tectonic controls on the Karlıova triple junction (Turkey): Implications for tectonic inversion and the initiation of volcanism. Tectonophysics 694: 368-384.
- Karaoğlu Ö, Gülmez F, Göçmengil G, Lustrino M, Di Giuseppe P et al. (2020). Petrological evolution of Karlıova-Varto volcanism (Eastern Turkey): Magma genesis in a transtensional triplejunction tectonic setting. Lithos 364–365: 1-15.
- Karslı O, Dokuz A, Uysal İ, Aydın F, Kandemir R et al. (2009). Generation of the Early Cenozoic Adakitic Volcanism by Partial Melting of Mafic Lower Crust, NE Turkey: Implications for Crustal Thickening to Delamination. II. International Symposium on the Geology of the Black Sea Region, Ankara, Türkiye. pp. 99-100.
- Karslı O, Dokuz A, Uysal İ, Aydın F, Kandemir R et al. (2010). Generation of the Early Cenozoic adakitic volcanism by partial melting of the mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos 114: 109–120.
- Karslı O, Uysal İ, Ketenci M, Dokuz A, Kandemir R et al. (2011). Adakite-like granitoid porphyries in Eastern Turkey: potential parental melts and geodynamic implications. Lithos 127: 354- 372.
- Karslı O, Uysal İ, Dilek Y, Aydın F, Kandemir R (2013). Geochemical modeling of early Eocene adakitic magmatism in the Eastern Pontides, NE Anatolia: continental crust or subducted oceanic slab origin? International Geology Review 55 (16): 2083-2095.
- Karslı O, Dokuz A, Kandemir R, Aydin F, Schmitt AK et al. (2019). Adakitic parental melt generation by partial fusion of the juvenile lower crust, Sakarya Zone, NE Turkey: A far-field response to break-off of the southern Neotethyan oceanic lithosphere. Lithos 338-339: 58-72.
- Karslı O, Caran Ş, Çoban H, Şengün F, Tekkanat O et al. (2020). Melting of the juvenile lower crust in a far-field response to roll-back of the southern Neotethyan oceanic lithosphere: The Oligocene adakitic dacites, NE Turkey. Lithos 370-371: 105695.
- Kay RW, Kay SM (2002). Andean adakites: three ways to make them. Acta Petrologica Sinica 18 (3): 303-311.
- Kay SM, Ramos VA, Marquez M (1993). Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. Journal of Petrology 101: 703-714.
- Kay SM, Jicha BR, Citron GL, Kay RW, Tibbetts AK et al. (2019). The Calc-alkaline Hidden Bay and Kagalaska Plutons and the construction of the Central Aleutian oceanic arc crust. Journal of Petrology 60 (2): 393–439.
- Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS et al. (1997). Trace element and Sr–Nd– Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis: Geochimica et Cosmochimica Acta 3: 577–600.
- Keskin M (2003). Magma generation by slab steepening and breakoff beneath a subduction accretion complex: an alternative model for collision-related volcanism in eastern Anatolia. Geophysical Research Letters 30: 8046-8050.
- Keskin M (2005). Domal uplift and volcanism in a collision zone without a mantle plume: Evidence from Eastern Anatolia. http://www.mantleplumes. org/Anatolia.html.
- Keskin M, Pearce JA, Mitchell JG (1998). Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum– Kars Plateau, northeastern Turkey. Journal of Volcanology Geothermal Research 85: 355–404.
- Kheirkhah M, Allen MB, Emami M (2009). Quaternary syn-collision magmatism from the Iran/Turkey borderlands. Journal of Volcanology and Geothermal Research 182: 1–12.
- Kheirkhah M, Neill I, Allen MB, Ajdari K (2013). Small-volume melts of lithospheric mantle during continental collision: Late Cenozoic lavas of Mahabad, NW Iran. Journal of Asian Earth Sciences 74: 37–49.
- Koshnaw RI, Horton BK, Stockli DF, Barber DE, Tamar-Agha MY et al. (2017). Neogene shortening and exhumation of the Zagros fold-thrust belt and foreland basin in the Kurdistan region of northern Iraq. Tectonophysics 694: 332–355.
- Kounoudis R, Bastow ID, Ogden CS, Goes S, Jenkins J et al. (2020). Seismic tomographic imaging of the Eastern Mediterranean mantle: Implications for Terminal-stage subduction, the uplift of Anatolia, and the development of the North Anatolian Fault. Geochemistry, Geophysics, Geosystems 21: e2020GC009009. doi: 10.1029/2020GC009009
- Kürüm S, Akgül B, Erdem E (2006). Examples of neogene volcanism in Eastern Turkey: comparative petrographic, geochemical and petrologic features of Malatya-Elazığ-Tunceli volcanics. Journal of Geochemical Society of India 68: 129-136.
- Kürüm S, Önal A, Boztuğ D, Spell T, Arslan M (2008). 40Ar/39Ar age and geochemistry of the post-collisional Miocene Yamadağvolcanics in the Arapkir area (Malatya Province), eastern Anatolia, Turkey. Journal of Asian Earth Sciences 33 (3-4): 229–251
- Kürüm S, Akgül B, Önal AÖ, Boztuğ D, Harlavan Y et al. (2011). An example for arc-type granitoids along collisional zones: the Pertek granitoid, Taurus orogenic belt, Turkey. International Journal of Geosciences 2: 214-226.
- Leake EB (1971). On aluminous and edenitic hornblendes. Mineralogical Magazine 38: 389-407.
- Leake EB, Wooley AR, Arps CES, Birch WD, Gilbert MC et al. (1997). Nomenclature of amphiboles report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy 9: 623-651.
- Lechmann A, Burg JP, Ulmer P, Guillong M, Faridi M (2018). Metasomatized mantle as the source of Mid-MioceneQuaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence. Lithos 304 (307): 311–328.
- Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B et al. (2002). Igneous Rocks: A classification and glossary of terms, recommendations of the international union of geological sciences, subcommission of the systematics of igneous rocks. Cambridge University Press, Cambridge, UK. London, Special Publications 16: 59-76.
- Li SM, Zhu DC, Wang Q, Zhao Z, Zhang LL et al. (2016). Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156 ± 2 Ma from the north of Gerze, central Tibet: Records of the Bangong–Nujiang oceanic ridge subduction during the Late Jurassic. Lithos 262: 456–469.
- Lin YC, Chung S, Bingöl AF, Yang L, Okrostsvaridze A et al. (2020). Diachronous initiation of post-collisional magmatism in the Arabia-Eurasia collision zone. Lithos 356 (357): 1-15.
- Liu H, Zhao JH (2019). Slab breakoff beneath the northern Yangtze Block: Implications from the Neoproterozoic Dahongshan mafic intrusions. Lıthos https://doi.org/10.1016/j. lithos.2019.05.037
- Liu S, Hu RZ, Feng CX, Zhou HB, Li C et al. (2008). Cenozoic high Sr/Y volcanic rocks in the Qiangtang terrane, northern Tibet: geochemical and isotopic evidence for the origin of delaminated lower continental melts. Geological Magazine 145: 463–474.
- Ma L, Wang BD, Jiang ZQ, Wang Q, Li ZX et al. (2012). Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: Partial melting of the thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos 196–197: 321–338.
- Macpherson CG, Dreher ST, Thirlwall MF (2006). Adakites without slab melting: high-pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters 243: 581-593.
- McNab F, Ball PW, Hoggard MJ, White NJ (2018). Neogene uplift and magmatism of Anatolia: Insights from drainage analysis and basaltic geochemistry. Geochemistry, Geophysics, Geosystems 19 (1): 175–213.
- Martin H (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46: 411-429.
- Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005). An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79: 1-24.
- McQuarrie N, Van Hinsbergen DJJ (2013). Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology 41 (3): 315– 318. doi: 10.1130/g33591.1
- Moghadam HS, Ghorbani G, Khedr MZ, Fazlnia N, Chiaradia M et al. (2014). Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: implications for the geodynamic evolution of the Turkish–Iranian High Plateau. Gondwana Research 26: 1028–1050.
- Moyen JF (2009). High Sr/Y and La/Yb ratios: the meaning of the ‘adakitic signature. Lithos 112: 556–574.
- MTA (2002). 1/500.000 ölçekli Türkiye Jeoloji Haritası, Erzurum, Sivas Paftaları, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara (in Turkish).
- Nebel O, Nebel-Jacobsen Y, Mezger K, Berndt J (2007). Initial Hf isotope compositions in magmatic zircon from early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages. Chemical Geology 241: 23–37.
- Nichols GT, Wyllie PJ, Stern CR (1994). Subduction zone melting of pelagic sediments constrained by melting experiments. Nature 371: 785-788.
- Okay AI, Zattin M, Cavazza W (2010). Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38 (1): 35–38.
- Özkul M (1988). Elazığ batısında Kırkgeçit Formasyonu üzerinde sedimantolojik incelemeler. PhD, Fırat Üniversitesi, Elazığ, Turkey (in Turkish).
- Palmer MR, Ersoy EY, Akal C, Uysal İ, Genç ŞC et al. (2019). A short, sharp pulse of potassium-rich volcanism during continental collision and subduction. Geological 47 (11): 1083–1087.
- Parlak O, Çolakoğlu A, Dönmez C, Sayak H, Yıldırım N et al. (2012). Geochemistry and tectonic significance of ophiolites along the Ankara-Erzincan süture zone in northeastern Anatolia. In: Robertson AHF, Parlak O, Ünlügenç UC (editors). Geological Development of Anatolia and the Easternmost Mediterranean Region. Geological Society, London, Special Publications 372: 75-105.
- Patiño Douce AE, Beard JS (1996). Effects of P, f(O2) and Mg/Fe Ratio on Dehydration Melting of Model Metagreywackes. Journal of Petrology 37: 999-1024.
- Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ et al. (1990). Genesis of collision volcanism in eastern Anatolia Turkey. Journal of Volcanology and Geothermal Research 44: 189-22.
- Peccerillo A, Taylor SR (1976). Geochemistry of Eocene CalcAlkaline Volcanic Rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology 58: 63-81.
- Petford N, Atherton M (1996). Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith. Peru. Journal of Petrology 37: 1491–1521.
- Plank T, Langmuir CH (1998). The chemical composition of subducting sediment: implications for the crust and mantle. Chemical Geology 145: 325–394.
- Portner DE, Delph JR, Biryol CB, Beck SL, Zandt G et al. (2018). Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P‐wave tomography beneath Anatolia. Geosphere 14 (3): 907– 925.
- Prouteau G, Scaillet B, Pichavant M, Maury R (2001). Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 40: 197–200.
- Prouteau G, Scaillet B (2003). Experimental constraints on the origin of the 1991 Pinatubo dacite. Journal of Petrology 44: 2203–2241.
- Racano S, Schildgen TF, Cosentino D, Miller SR (2021). Temporal and spatial variations in rock uplift from river-profile inversions at the Central Anatolian Plateau southern margin. Journal of Geophysical Research: Earth Surface 126: e2020JF006027. doi: 10.1029/2020JF006027
- Rapp RP, Watson EB, Miller CF (1991). Partial melting of amphibolite/ eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research 51: 1-25.
- Rapp RP, Watson EB (1995). Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crustmantle recycling. Journal of Petrology 36: 891–931.
- Rapp RP, Shimizu N, Norman MD (2003). Growth of early continental crust by partial melting of eclogite. Nature 425: 605–609.
- Rızaoğlu T, Parlak O, Höock V, Koller F, Hames WE et al. (2009). Andean-type active margin formation in the eastern Taurides: geochemical and geochronological evidence from the Baskil granitoid (Elazığ, SE Turkey). Tectonophysics 473: 188-207.
- Reid MR, Delph JR, Cosca MA, Schleiffarth WK, Kuşcu GG (2019). Melt equilibration depths as sensors of lithospheric thickness during Eurasia-Arabia collision and the uplift of the Anatolian Plateau: Geology 47: 943–947.
- Rollinson HR, Tarney J (2005). Adakites-the key to understanding LILE depletion in granulites. Lithos 79: 61-81.
- Rudnick RL, Gao S (2003). The Composition of the Continental Crust. In: Holland HD, Turekian KK (editors). Treatise on Geochemistry, Elsevier-Pergamon, Oxford 3: 1-64.
- Sağıroğlu A, Şaşmaz A (2004). Mineralogy and geochemistry of the argentiferous Pb–Zn and Cu veins of the Çolaklı area, Elazığ, Eastern Turkey. Journal of Asian Earth Sciences 23 (1): 37-45.
- Scaillet B, Evans BW (1999). The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P–T– fO2– fH2O conditions of the dacite magma. Journal of Petrology 40: 381–411.
- Skobeltsyn G, Mellors R, Gök R, Türkelli N, Yetirmishli G et al. (2014). Upper mantle S wave velocity structure of the east Anatolian-Caucasus region. Tectonics 33: 207–221.
- Sun S, McDonough WF (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42: 313–345.
- Şen C, Dunn T (1994). Dehydration melting of a basaltic composition amphibolite at 1·5 and 2·0 GPa: implications for the origin of adakites. Contributions to Mineralogy and Petrology 117: 394- 409.
- Şen P, Şen E (2013). Petrogenetıc characterıstics of Oyaca – Kedikayası – Boyalık adakites in SW Ankara (central Anatolia, Turkey): Evidence for slab melt metasomatism. Bulletin of the Mineral Research and Exploration 146: 81-92.
- Şengör AMC, Yılmaz Y (1981). Tethyan Evolution of Turkey: A Plate Tectonic Approach. Tectonophysics 75: 181-241.
- Şengör A, Özeren S, Genç T, Zor E (2003). East Anatolian high plateau as a mantle supported, north-south shortened domal structure, Geophysical Research Letters 30 (24): 8045.
- Şengör AMC, Özeren MS, Keskin M, Sakınç M, Özbakır AD et al. (2008). Eastern Turkish high plateau as a small Turkictype orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Science Reviews 90 (1): 1–48.
- Topuz G, Okay AI, Altherr R, Schwarz WH, Siebel W et al. (2011). Post-collisional adakite-like magmatism in the Ağvanis massif and implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos 125: 131–150.
- Topuz G, Candan O, Zack T, Chen F, Li QL (2019). Origin and significance of Early Miocene high-potassium I-type granite plutonism in the East Anatolian plateau (the Taşlıçay intrusion). Lithos 348-349: 105210.
- Tsuchiya N, Suzuki S, Kimura JI, Kagami H (2005). Evidence for slab melt/mantle reaction: Petrogenesis of early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos 79: 179–206.
- Ural M, Arslan M, Göncüoglu MC, Tekin UK, Kürüm S (2015). Late Cretaceous arc and back-arc formation within the southern Neotethys: whole-rock, trace element, and Sr-Nd-Pb isotopic data from basaltic rocks of the Yüksekova complex (MalatyaElazığ, SE Turkey). Ofioliti 40 (1): 57-72.
- Varol E, Temel A, Gourgaud A, Bellon H (2007). Early Miocene ‘adakite-like’ volcanism in the Balkuyumcu region, central Anatolia, Turkey: petrology and geochemistry. Journal of Asian Earth Sciences 30: 613-628.
- Wang Y, Foley SF (2018). Hybridization Melting between continentderived sediment and depleted peridotite in subduction zones. Journal of Geophysical Research: Solid Earth 123. doi: 10.1029/ 2018JB015507
- Wang Q, McDermott F, Xu JF, Bellon H, Zhu YT (2005). Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology 33: 465–468.
- Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH et al. (2006). Petrogenesis of adakitic porphyries in an extensional tectonic setting, dexing, south China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology 47 (1): 119-144.
- Wang Q, Wyman DA, Xu J, Jian P, Zhao Z et al. (2007). Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of the thickened lower crust. Geochimica et Cosmochimica Acta 71: 2609–2636.
- Wang Y, Foley SF, Prelević D (2017). Potassium-rich magmatism from a phlogopite-free source. Geology 45: 467-470.
- Woodhead JD, Hergt JM, Davidson JP, Eggins SM (2001). Hafnium isotope evidence for ‘conservative’ element mobility during subduction processes. Earth and Planetary Science Letters 192: 331-346.
- Xu JF, Shinjo S, Defant MJ, Wang Q, Rapp RP (2002). Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 30: 1111-1114.
- Xu YG, Lan JB, Yang QJ, Huang XL, Qiu HN (2008). Eocene breakoff of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chemical Geology 255: 439-453.
- Yalçın H, Gündoğdu MN, Gourgaud A, Vidal P, Uçurum A (1998). Geochemical characteristics of Yamadag˘ı volcanics in central east Anatolia: an example from collision-zone volcanism. Journal of Volcanology and Geothermal Research 85: 303–326.
- Yılmaz Y, Şaroğlu F, Güner Y (1987). Initiation of the neomagmatism in east Anatolia. Tectonophysics 134: 177-199.
- Yılmaz Y, Güner Y, Şaroğlu F (1998). Geology of the Quaternary volcanic centers of East Anatolia. Journal of Volcanology and Geothermal Research 85: 173-210.
- Yılmaz H, Alpaslan M, Temel A (2007). Two-stage felsic volcanism in the western part of the southeastern Anatolian orogen: petrologic and geodynamic implications. International Geology Review 49: 120-141.
- Yılmaz-Şahin S, Aysal N, Güngör Y (2012). Petrogenesis of late cretaceous adakitic magmatism in the İstanbul zone (Çavuşbaşı Granodiorite, NW Turkey). Turkish Journal of Earth Sciences 21: 1029-1045.
- Yogodzinski GM, Less JM, Churikova TG, Dorendof F, Wörner G et al. (2001). Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 409: 500-504.
- Yumul Jr GP, Dimalanta CB, Faustino DV (1999). Silicic arc volcanism and lower crust melting: an example from the central Luzon, Philippines. Journal of Geology 154: 13-14.
- Yücel C (2018). Geochronology, geochemistry, and petrology of adakitic Pliocene–Quaternary volcanism in the Şebinkarahisar (Giresun) area, NE Turkey. Internatıonal Geology Review 61 (6): 754-777.
- Zhang Q, Wang Y, Qian Q, Yang JH, Wang YL et al. (2001). The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China. Acta Petrologica Sinica 17: 236-244.
- Zhang LY, Ducea MN, Ding L, Pullen A, Kapp P et al. (2014). Southern Tibetan Oligocene–Miocene adakites: A record of Indian slab tearing. Lithos 210–211: 209-223.
- Zhou Z (1986). The origin of intrusive mass in Fengshandong, Hubei province. Acta Petrologica Sinica 2: 59–70. (In Chinese with English Abstract).
- Zhu G, Liu GS, Niu ML, Xie CL, Wang YS et al. (2009). Syncollisional transform faulting of the Tan-Lu fault zone, East China. International Journal of Earth Sciences (Geology Rundsch) 98: 135-155.
- Zor E (2008). Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus. Geophysical Journal International 175: 1273–1282.