First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against postemplacement compositional changes and petrogenetic processes

Although for ultrabasic and basic magmas a plethora of tectonomagmatic diagrams have been used, with the exception of one bivariate diagram for refined tectonic setting of orogenic andesites, none is available for highly abundant intermediate magma. We present 3 sets of discrimination diagrams obtained from the correct statistical methodology of loge-ratio transformation and linear discriminant analysis. All major element loge-ratio variables in 3664 samples, only immobile major and trace element loge-ratio variables in 1858 samples, and immobile trace element loge-ratio variables in 1512 samples were used. These diagrams with probability-based tectonic field boundaries and high success rates (about 69%-96%, 63%-100%, and 64%-100%, respectively, for diagrams based on all major elements, immobile major and trace elements, and immobile trace elements) were first tested for fresh and highly altered rocks. The expected tectonic setting was indicated from our diagrams. The probability-based decisions and total percent probability estimates can fully replace the actual plotting of samples in the diagrams. The probability calculations were then used for tectonic discrimination of 7 case studies of Archean to Proterozoic rocks. An island arc setting was indicated for the Wawa greenstone belt (Canada), implying the existence of plate tectonic processes during the Late Archean, for western Tasmania (Australia) during the Cambrian, and for Chichijima Island (Bonin Islands, Japan) during the Eocene. Similarly, an arc setting (indecisive island or continental type) was obtained for south-central Sweden during the Paleoproterozoic and for Adola (southern Ethiopia) during the Neoproterozoic. A within-plate setting was inferred for the Neoproterozoic Malani igneous complex, Rajasthan, India. A collision setting was indicated for the Alps (France-Italy-Switzerland) during the Late Carboniferous. Modeling of likely as well as extreme processes indicates that these diagrams are robust against postemplacement compositional changes caused by analytical errors, element mobility, Fe-oxidation, alteration, and petrogenetic processes.

First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against postemplacement compositional changes and petrogenetic processes

Although for ultrabasic and basic magmas a plethora of tectonomagmatic diagrams have been used, with the exception of one bivariate diagram for refined tectonic setting of orogenic andesites, none is available for highly abundant intermediate magma. We present 3 sets of discrimination diagrams obtained from the correct statistical methodology of loge-ratio transformation and linear discriminant analysis. All major element loge-ratio variables in 3664 samples, only immobile major and trace element loge-ratio variables in 1858 samples, and immobile trace element loge-ratio variables in 1512 samples were used. These diagrams with probability-based tectonic field boundaries and high success rates (about 69%-96%, 63%-100%, and 64%-100%, respectively, for diagrams based on all major elements, immobile major and trace elements, and immobile trace elements) were first tested for fresh and highly altered rocks. The expected tectonic setting was indicated from our diagrams. The probability-based decisions and total percent probability estimates can fully replace the actual plotting of samples in the diagrams. The probability calculations were then used for tectonic discrimination of 7 case studies of Archean to Proterozoic rocks. An island arc setting was indicated for the Wawa greenstone belt (Canada), implying the existence of plate tectonic processes during the Late Archean, for western Tasmania (Australia) during the Cambrian, and for Chichijima Island (Bonin Islands, Japan) during the Eocene. Similarly, an arc setting (indecisive island or continental type) was obtained for south-central Sweden during the Paleoproterozoic and for Adola (southern Ethiopia) during the Neoproterozoic. A within-plate setting was inferred for the Neoproterozoic Malani igneous complex, Rajasthan, India. A collision setting was indicated for the Alps (France-Italy-Switzerland) during the Late Carboniferous. Modeling of likely as well as extreme processes indicates that these diagrams are robust against postemplacement compositional changes caused by analytical errors, element mobility, Fe-oxidation, alteration, and petrogenetic processes.

___

  • Agostini, S., Corti, G., Doglioni, C., Carminati, E., Innocenti, F., Tonarini, S., Manetti, P., Di Vincenzo, G. & Montanari, D. 200 Tectonic and magmatic evolution of the active volcanic front in El Salvador: insight into the Berlín and Ahuachapán geothermal areas. Geothermics 35, 368–408. Agostini, S., Tokçaer, M. & Savaşçın, M.Y. 2010. Volcanic rocks from Foça-Karaburun and Ayvalik-Lesvos grabens (western Anatolia) and their petrogenetic-geodynamic significance. Turkish Journal of Earth Sciences 19, 157–184.
  • Agrawal, S. 1999. Geochemical discrimination diagrams: a simple way of replacing eye-fitted boundaries with probability based classifier surfaces. Journal of the Geological Society of India 54, 335–346.
  • Agrawal, S., Guevara, M. & Verma, S.P. 2004. Discriminant analysis applied to establish major-element field boundaries for tectonic varieties of basic rocks. International Geology Review 46, 575–594.
  • Agrawal, S., Guevara, M. & Verma, S.P. 2008. Tectonic discrimination of basic and ultrabasic rocks through log-transformed ratios of immobile trace elements. International Geology Review 50, 1057–1079.
  • Agrawal, S. & Verma, S.P. 2007. Comment on “Tectonic classification of basalts with classification trees” by Pieter Vermeesch (2006).
  • Geochimica et Cosmochimica Acta 71, 3388–3390.
  • Aitchison, J. 1986. The Statistical Analysis of Compositional Data.
  • Chapman and Hall, London. Alam, M.A., Chandrasekharam, D., Vaselli, O., Capaccioni, B., Manetti, P. & Santo, P.B. 2004. Petrology of the prehistoric lavas and dyke of the Barren island, Andaman sea, Indian ocean. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences) 113, 715–722.
  • Albarède, F., Luais, B., Fitton, G., Semet, M., Kaminski, E., Upton, B.G.J., Bachèlery, P. & Cheminée, J.L. 1997. The geochemical regimes of Piton de la Fournaise Volcano (Réunion) during the last 530 000 years. Journal of Petrology 38, 171–201.
  • Albrecht, A. & Goldstein, S.L. 2000. Effects of basement composition and age on silicic magmas across an accreted terranePrecambrian crust boundary, Sierra Madre Occidental, Mexico. Journal of South American Earth Sciences 13, 255–273.
  • Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. & Mitchell, J.G. 2000.
  • Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research 102, 67–95. Alvarado, G.E., Soto, G.J., Schmincke, H.U., Bolge, L.L. & Sumita, M. 200 The 1968 andesitic lateral blast eruption at Arenal volcano, Costa Rica. Journal of Volcanology and Geothermal Research 157, 9–
  • Arnaud, N.O., Vidal, P., Tapponnier, P., Matte, P. & Deng, W.M. 1992. The high K20 volcanism of northwestern Tibet: geochemistry and tectonic implications. Earth and Planetary Science Letters 111, 351–367.
  • Arpa, M.C.B., Patino, L.C. & Vogel, T.A. 2008. The basaltic to trachydacitic upper Diliman Tuff in Manila: Petrogenesis and comparison with deposits from Taal and Laguna Calderas. Journal of Volcanology and Geothermal Research 177, 1020–1034.
  • Auchapt, A., Dupuy, C., Dostal, J. & Kanika, M. 1987. Geochemistry and petrogenesis of rift-related volcanic rocks from South Kivi (Zaire). Journal of Volcanology and Geothermal Research 31, 33–
  • Ayalew, D., Ebinger, C., Bourdon, E., Wolfenden, E., Yirgu, G. & Grassineau, N. 2006. Temporal compositional variation of synrift rhyolites along the western margin of the southern Red Sea and northern Main Ethiopian Rift. In: Yirgu, G., Ebinger, C. & Maguire, P.K.H. (eds), The Afar Volcanic Province within the East African Rift System. Geological Society of London Special Publications, London, 121–130.
  • Aydar, E., Bayhan, H. & Gourgaud, A. 1998. Koroglu caldera, mid-west Anatolia, Turkey: volcanological and magmatological evolution. Journal of Volcanology and Geothermal Research 85, 83–98.
  • Aydin, F., Karsli, O. & Chen, B. 2008. Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Journal of Volcanology and Geothermal Research 104, 249–266.
  • Bachmann, O., Dungan, M.A. & Lipman, P.W. 2002. The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. Journal of Petrology 43, 1469–1503.
  • Bailey, J.C. 1981. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chemical Geology 32, 139–154.
  • Ban, M., Hirotani, S., Wako, A., Suga, T., Iai, Y., Kagashima, S.I., Shuto, K. & Kagami, H. 2007. Origin of felsic magmas in a largecaldera-related stratovolcano in the central part of NE Japan — Petrogenesis of the Takamatsu volcano. Journal of Volcanology and Geothermal Research 167, 100–118.
  • Barberi, F., Ferrara, G., Santacroce, R., Treuil, M. & Varet, J. 1975. A transitional basalt-pantellerite sequence of fractional crystallization, the Boina centre (Afar Rift, Ethiopia). Journal of Petrology 16, 22–56.
  • Bardintzeff, J.M. & Deniel, C. 1992. Magmatic evolution of Pacaya and Cerro Chiquito volcanological complex, Guatemala. Bulletin of Volcanology 54, 267–283.
  • Barling, J., Goldstein, S.L. & Nicholls, I.A. 1994. Geochemistry of Heard Island (Southern Indian Ocean): characterization of an enriched mantle component and implication for enrichment of the sub-Indian ocean mantle. Journal of Petrology 35, 1017–1053.
  • Barnett, V. & Lewis, T. 1994. Outliers in Statistical Data. 3rd ed. John
  • Wiley & Sons, Chichester. Barsdell, M. 1988. Petrology and petrogenesis of clinopyroxene-rich tholeiitic lavas, Merelava volcano, Vanuatu. Journal of Petrology 29, 927–964.
  • Barsdell, M. & Berry, R.F. 1990. Origin and evolution of primitive island arc ankaramites from western Epi, Vanuatu. Journal of Petrology 31, 747–777.
  • Basu, A.R., Junwen, W., Wankang, H., Guanghong, X. & Tatsumoto, M. 19 Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters 105, 149–169. Bau, M. & Knittel, U. 1993. Significance of slab-derived partial melts and aqueous fluids for the genesis of tholeiitic and calc-alkaline island-arc basalts: evidence from Mt. Arayat, Philippines. Chemical Geology 105, 233–251.
  • Beier, C., Haase, K.M. & Hansteen, T.H. 2006. Magma evolution of the Sete Cidades volcano, São Miguel, Azores. Journal of Petrology 47, 1375–1411.
  • Bell, K. & Peterson, T. 1991. Nd and Sr isotopic systematics of
  • Shombole volcano, East Africa, and the links between nephelinites, phonolites, and carbonatites. Geology 19, 582– 5 Bellieni, G., Peccerillo, A. & Poli, G. 1981. The Vedrette di Ries
  • (Rieserferner) plutonic complex: petrological and geochemical data bearing on its genesis. Contributions to Mineralogy and Petrology 78, 145–156. Bertrand, H. 1991. The Mesozoic tholeiitic province of northwest
  • Africa: a volcano-tectonic record of the early opening of Central Atlantic. In: Kampunzu, A.B. & Lubala, R.T. (eds), Magmatism in Extensional Structural Settings. Springer Verlag, Berlin, 147–188. Besang, C., Harre, W., Kreuzer, H., Lenz, H., Müller, P. & Wendt, I. 19 Radiometrische datierung, geochemische und petrographische untersuchungen der fichtelgebirgsgranite. Geologisches Jahrbuch 8, 3–71. Bhushan, S.K. & Chandrasekaran, V. 2002. Geology and geochemistry of the magmatic rocks of the Malani igneous suite and Tertiary volcanic province of western Rajasthan. Memoirs of the Geological Survey of India 126, 1–129.
  • Bloomer, S.H. 1987. Geochemical characteristics of boninite- and tholeiite-series volcanic rocks from the Mariana forearc and the role of an incompatible element enriched fluid in arc petrogenesis. Geological Society of America Special Paper 215, 151–164.
  • Bloomer, S.H. & Hawkins, J.W. 1987. Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench.
  • Contributions to Mineralogy and Petrology 97, 361–377. Bloomer, S.H., Stern, R.J., Fisk, E. & Geschwind, C.H. 1989. Shoshonitic volcanism in the northern Mariana arc: 1. Mineralogic and major and trace element characteristics. Journal of Geophysical Research 94, 4469–4496.
  • Blum, N., Halbach, P. & Münch, U. 1996. Geochemistry and mineralogy of alkali basalts from Tropic Seamount, central Atlantic Ocean. Marine Geology 136, 1–19.
  • Bohrson, W.A. & Reid, M.R. 1995. Petrogenesis of alkaline basalts from Socorro Island, Mexico: trace element evidence for contamination of ocean island basalt in the shallow ocean crust. Journal of Petrology 100, 24555–24576.
  • Bohrson, W.A. & Reid, M.R. 1997. Genesis of silicic peralkaline volcanic rocks in an ocean island setting by crustal melting and open-system processes: Socorro Island, Mexico. Journal of Petrology 38, 1137–1166.
  • Bolge, L.L., Carr, M.J., Feigenson, M.D. & Alvarado, G.E. 2006. Geochemical stratigraphy and magmatic evolution at Arenal volcano, Costa Rica. Journal of Volcanology and Geothermal Research 157, 34–48.
  • Booden, M.A., Smith, I.E.M., Black, P.M. & Mauk, J.L. 2011. Geochemistry of the Early Miocene volcanic succession of Northland, New Zealand, and implications for the evolution of subduction in the Southwest Pacific. Journal of Volcanology and Geothermal Research 199, 25–37.
  • Borsi, S., Ferrara, G., Innocenti, F. & Mazzuoli, R. 1972. Geochronology and petrology of recent volcanics in the eastern Aegean Sea (West Anatolia and Lesvos Island. Bulletin of Volcanology 36, 473–496.
  • Brophy, J.G. 1986. The Cold Bay volcanic center, Aleutian volcanic arc. I. Implications for the origin of hi-alumina arc basalt. Contributions to Mineralogy and Petrology 93, 368–380.
  • Brown, A.V. & Jenner, G.A. 1989. Geological setting, petrology and chemistry of Cambrian boninite and low-Ti tholeiite lavas in western Tasmania. In: Crawford, A.J. (ed), Boninites. Unwin Hyman, London, 233–263.
  • Brown, G.M., Holland, J.G., Sigurdsson, H., Tomblin, J.F. & Arculus, R.J. 1977. Geochemistry of the Lesser Antilles volcanic island arc. Geochimica et Cosmochimica Acta 41, 785–801.
  • Brueseke, M.E. & Hart, W.K. 2009. Intermediate composition magma production in an intracontinental setting: unusual andesites and dacites of the mid-Miocene Santa Rosa–Calico volcanic field, Northern Nevada. Journal of Volcanology and Geothermal Research 188, 197–213.
  • Bruni, S., D’Orazio, M., Haller, M.J., Innocenti, F., Manetti, P., Pécskay, Z. & Tonarini, S. 2008. Time-evolution of magma sources in a continental back-arc setting: the Cenozoic basalts from Sierra de San Bernardo (Patagonia, Chubut, Argentina). Geological Magazine 145, 714–732.
  • Bryan, S.E. 2006. Petrology and geochemistry of the Quaternary Caldera-forming, Phonolitic granadilla eruption, Tenerife (Canary Islands). Journal of Petrology 47, 1557–1589.
  • Bryan, W.B., Stice, G.D. & Ewart, A. 1972. Geology petrography, and geochemistry of the volcanic islands of Tonga. Journal of Geophysical Research 77, 1566–1585.
  • Bryant, J.A., Yogodzinski, G.M., Hall, M.L., Lewicki, J.L. & Bailey, D.G. 2006. Geochemical constraints on the origin of volcanic rocks from the Andean Northern volcanic zone, Ecuador. Journal of Petrology 47, 1147–1175.
  • Cadoux, A. & Pinti, D.L. 2009. Hybrid character and preeruptive events of Mt Amiata volcano (Italy) inferred from geochronological petro-geochemical and isotopic data. Journal of Volcanology and Geothermal Research 179, 169–190.
  • Cameron, B.I., Walker, J.A., Carr, M.J., Patino, L.C., Matías, O. & Feigenson, M.D. 2002. Flux versus decompression melting at stratovolcanoes in southeastern Guatemala. Journal of Volcanology and Geothermal Research 119, 21–50.
  • Cameron, W.E. 1989. Contrasting boninite-tholeiite association from New Caledonia. In: Crawford, A.J. (ed), Boninites. Unwin Hyman, London, 314–338.
  • Camp, V.E., Roobol, M.J. & Hooper, P.R. 1991. The Arabian continental alkali basalt province: part II. Evolution of Harrats
  • Khaybar, Ithnayn, and Kura, Kingdom of Saudi Arabia. Geological Society of America Bulletin 103, 363–391. Carr, M.J. 1984. Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. Journal of Volcanology and Geothermal Research 20, 231–252.
  • Carr, M.J., Feigenson, M.D. & Bennett, E.A. 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc.
  • Contributions to Mineralogy and Petrology 105, 369–380. Castillo, P.R. & Newhall, C.G. 2004. Geochemical constraints on possible subduction components in lavas of Mayon and Taal volcanoes, southern Luzon, Philippines. Journal of Petrology 45, 1089–1108.
  • Chadwick, J., Perfit, M., McInne, B., Kamenov, G. & Plank, T. 2009.
  • Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific. Earth and Planetary Science Letters 279, 293–302. Chadwick, J.P., Troll, V.R., Ginibre, R.G., Morgan, D., Gertisser, R., Waight, T.E. & Davidson, J.P. 2007. Carbonate assimilation at
  • Merapi Volcano, Java, Indonesia: insights from crystal isotope stratigraphy. Journal of Petrology 48, 1793–1812.
  • Chan, L.H., Leeman, W.P. & You, C.F. 1999. Lithium isotopic composition of Central American Volcanic Arc lavas: implications for modification of subarc mantle by slab-derived fluids. Chemical Geology 160, 255–280.
  • Chauvel, C. & Jahn, B.M. 1984. Nd-Sr isotope and REE geochemistry of alkali basalts from the Massif Central, France. Geochimica et
  • Cosmochimica Acta 48, 93–110. Chen, J.L., Xu, J.F., Wang, B.D., Kang, Z.Q. & Jie, L. 2010. Origin of
  • Cenozoic alkaline potassic volcanic rocks at KonglongXiang, Lhasa terrane, Tibetan Plateau: Products of partial melting of a mafic lower-crustal source? Chemical Geology 273, 286–299. Chung, S.L., Jahn, B.M., Chen, S.J., Lee, T. & Chen, C.H. 1995.
  • Miocene basalts in northwestern Taiwan: evidence for EMtype mantle sources in the continental lithosphere. Geochimica et Cosmochimica Acta 59, 549–555. Churikova, T., Dorendorf, F. & Wörner, G. 2001. Sources and fluids in the mantle wedge below Kamchatka, evidence from acrossarc geochemical variation. Journal of Petrology 42, 1567–1593.
  • Cole, J.W. 1981. Genesis of lavas of the Taupo volcanic zone, North Island, New Zealand. Journal of Volcanology and Geothermal Research 10, 317–337.
  • Cousens, B.L., Clague A.D. & Sharp, W.D. 2003. Chronology, chemistry, and origin of trachytes from Hualalai Volcano, Hawaii. Geochemistry Geophysics Geosystems 4, 1078, doi: 101029/2003GC000560.
  • Davidson, J.P., Ferguson, K.M., Colucci, M.T. & Dungan, M.A. 1988. The origin and evolution of magmas from the San PedroPellado volcanic complex, S. Chile: multicomponent sources and open system evolution. Contributions of Mineralogy and Petrology 100, 429–445.
  • Davidson, J.P. & Wilson, I.R. 1989. Evolution of an alkali basalttrachyte suite from Jebel Marra volcano, Sudan, through assimilation and fractional crystallization. Earth and Planetary Science Letters 95, 141–160.
  • Day, J.M.D., Pearson, D.G., Macpherson, C.G., Lowry, D. & Carracedo, J.C. 2010. Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochimica et Cosmochimica Acta 74, 6565–6589.
  • De Mulder, M., Hertogen, J., Deutsch, S. & André, L. 1986. The role of crustal contamination in the potassic suite of the Karisimbi volcano (Virunga, African Rift Valley. Chemical Geology 57, 117–136. de Silva, S.L. 1991. Styles of zoning in central Andean ignimbrites: insights into magma chamber processes. Geological Society of America Special Paper 265, 217–232.
  • Debon, F. & Lemmet, M. 1999. Evolution of Mg/Fe ratios in Late Variscan plutonic rocks from the external crystalline massifs of the Alps (France, Italy, Switzerland). Journal of Petrology 40, 1151–1185.
  • Defant, M.J., Clark, L.F., Stewart, R.H., Drummond, M.S., De Boer, J.Z., Maury, R.C., Bellon, H., Jackson, T.E. & Restrepo, J.F. 1991a. Andesite and dacite genesis via contrasting processes: the geology and geochemistry of El Valle Volcano, Panama. Contributions to Mineralogy and Petrology 106, 309–324.
  • Defant, M.J., Jacques, D., Maury, R.C., De Boer, J. & Joron, J.L. 19 Geochemistry and tectonic setting of the Luzon arc, Philippines. Geological Society of America Bulletin 101, 663– 6 Defant, M.J., Maury, R.C., Ripley, E.M., Feigenson, M.D. & Jacques, D. 1991b. An example of island-arc petrogenesis: geochemistry and petrology of the southern Luzon arc, Philippines. Journal of Petrology 32, 455–500.
  • Defant, M.J., Richerson, P.M., De Boer, J.Z., Stewart, R.H., Maury, R.C., Bellon, H., Drummond, M.S., Feigenson, M.D. & Jackson, T.E. 1991c. Dacite genesis via both slab melting and differentiation: petrogenesis of La Yeguada volcanic complex, Panama. Journal of Petrology 32, 1101–1142.
  • Defant, M.J., Sherman, S., Maury, R.C., Bellon, H., de Boer, J., Davidson, J. & Kepezhinskas, P. 2001. The geology, petrology, and petrogenesis of Saba Island, Lesser Antilles. Journal of Volcanology and Geothermal Research 107, 87–111.
  • Delaloye, M. & Bingol, E. 2000. Granitoids from western and northwestern Anatolia: geochemistry and modeling of geodynamic evolution. International Geology Review 42, 241– 2
  • Deniel, C., Vidal, P., Coulon, C., Vellutini, P. & Piguet, P. 1994.
  • Temporal evolution of mantle sources during continental rifting: the volcanism of Djibouti (Afar). Journal of Geophysical Research 99, 2853–2869.
  • DePaolo, D.J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189–202.
  • Déruelle, B. 1982. Petrology of the Plio-Quaternary volcanism of the south-central and meridional Andes. Journal of Volcanology and Geothermal Research 14, 77–124.
  • Dilek, Y., Imamverdiyev, N. & Altunkaynak, S. 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus
  • (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review 52, 536–578. Dini, A., Innocenti, F., Rocchi, S., Tonarini, S. & Westerman, D.S. 200 The magmatic evolution of the late Miocene laccolithpluton-dyke granitic complex of Elba Island, Italy. Geological Magazine 139, 257–279. Dorendorf, F., Churikova, T., Koloskov, A. & Wörner, G. 2000. Late
  • Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): volcanic geology and geochemical evolution. Journal of Volcanology and Geothermal Research 104, 131–151. Duffield, W.A., Heiken, G.H., Wohletz, K.H., Maassen, L.W., Dengo, G., McKee, E.H. & Castañeda, O. 1992. Geology and geothermal potential of the Tecuamburro volcano area, Guatemala. Geothemics 21, 425–446.
  • DuFrane, S.A., Asmerom, Y., Mukasa, S.B., Morris, J.D. & Dreyer, B.M. 2006. Subduction and melting processes inferred from
  • U-series, Sr-Nd-Pb isotope, and trace element data, Bicol and Bataan arcs, Philippines. Geochimica et Cosmochimica Acta 70, 3401–3420.
  • Duncker, K.E., Wolff, J.A., Harmon, R.S., Leat, P.T., Dickin, A.P. & Thompson, R.N. 1991. Diverse mantle and crustal components in lavas of the NW Cerros del Rio volcanic field, Rio Grande
  • Rift, New Mexico. Contributions to Mineralogy and Petrology 108, 331–345. Dupuy, C., Dostal, J., Marcelot, G., Bougault, H., Joron, J.L. & Treuil, M. 1982. Geochemistry of basalts from central and southern New Hebrides arc: implication for their source rock composition. Earth and Planetary Science Letters 60, 207–225.
  • Edwards, C.M.H., Menzies, M.A., Thirlwall, M.F., Morris, J.D., Leeman, W.P. & Harmon, R.S. 1994. The transition to potassic alkaline volcanism in island arcs: the Ringgit-Beser complex, east Java, Indonesia. Journal of Petrology 35, 1557–1595.
  • Ekici, T., Alpaslan, M., Parlak, O. & Uçurum, A. 2009. Geochemistry of Middle Miocene collision-related Yamadağı (Eastern Anatolia) calc-alkaline volcanics, Turkey. Turkish Journal of Earth Sciences 18, 511–528.
  • Elburg, M. & Foden, J. 1998. Temporal changes in arc magma geochemistry, northern Sulawesi, Indonesia. Earth and Planetary Science Letters 163, 381–398.
  • Elburg, M. & Foden, J. 1999. Sources for magmatism in central Sulawesi: geochemical and Sr-Nd-Pb isotopic constraints. Chemical Geology 156, 67–93.
  • Elburg, M.A., van Leeuwen, T., Foden, J. & Muhardjo. 2003. Spatial and temporal isotopic domains of contrasting igneous suites in Western and Northern Sulawesi, Indonesia. Chemical Geology 199, 243–276.
  • Elliott, T., Plank, T., Zindler, A., White, W.M. & Bourdon, B. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research 102, 14991–15019.
  • Ercan, T., Dinçel, A. & Günay, E. 1979. Uşak volkanitlerinin petrolojisi ve plaka tektoniği açısından Ege Bölgesindeki yeri [Petrology of the Uşak volcanics and their place in the Aegean region according to plate tectonics]. Türkiye Jeoloji Kurumu Bülteni 22, 185–198 (in Turkish with English abstract).
  • Ercan, T., Satır, M., Kreuzer, H., Türkecan, A., Günay, E., Çevikbaş, A., Ates, M. & Can, B. 1985. Batı Anadolu Senozoyik volkanitlerine ait yeni kimyasal, izotopik ve radyometrik verilerin yorumu [Interpretation of new chemical, isotopic and radiometric data on Cenozoic volcanics of western Anatolia]. Türkiye Jeoloji Kurumu Bülteni 28, 121–136 [in Turkish with English abstract].
  • Ercan, T., Satır, M., Sevin, D. & Türkecan, A. 1997. Some new radiometric ages from Tertiary to Quaternary volcanic rocks from W. Anatolia (Turkey). Maden Tetkik Arama Dergisi 119, Ertürk, O. 1990. Petrology of the Cenozoic volcanics in the Biga Peninsula, NW Turkey. PhD, Ankara University, Ankara.
  • Esder, T. 1992. The geology and petrology of the Neogene aged volcanic rocks of Aliağa (İzmir) area. First International Symposium on Eastern Mediterranean Geology, Adana, Turkey.
  • Ewart, A., Brothers, R.N. & Mateen, A. 1977. An outline of the geology and geochemistry, and the possible petrogenetic evolution of the volcanic rocks of the Tonga-Kermadec-New Zealand island arc. Journal of Volcanology and Geothermal Research 2, 205–270.
  • Ewart, A. & Bryan, W.B. 1972. Petrography and geochemistry of the igneous rocks from EUA, Tongan islands. Geological Society of America Bulletin 83, 3281–3298.
  • Fan, Q. & Hooper, P.R. 1991. The Cenozoic basaltic rocks of eastern China: petrology and chemical composition. Journal of Petrology 32, 765–810.
  • Feigenson, M.D., Hofmann, A.W. & Spera, F.J. 1983. Case studies on the origin of basalt. II. The transition from tholeiitic to alkalic volcanism on Kohala volcano, Hawaii. Contributions to Mineralogy and Petrology 84, 390–405.
  • Feuerbach, D.L., Smith, E.I., Walker, J.D. & Tangeman, J.A. 1993. The role of the mantle during crustal extension: constraints from geochemistry of volcanic rocks in the Lake Mead area, Nevada and Arizona. Geological Society of America Bulletin 105, 1561–
  • Fitton, J.G., James, D. & Leeman, W.P. 1991. Basic magmatism associated with Late Cenozoic extension in the western United
  • States: compositional variations in space and time. Journal of Geophysical Research 96, 13693–13711.
  • Foden, J.D. & Varne, R. 1980. The petrology and tectonic setting of
  • Quaternary-Recent volcanic centres of Lombok and Sumbawa, Sunda arc. Chemical Geology 30, 201–226. Fontijn, K., Ernst, G.G.J., Elburg, M.A., Williamson, D., Abdallah, E., Kwelwa, S., Mbede, E. & Jacobs, P. 2010. Holocene explosive eruptions in the Rungwe Volcanic Province, Tanzania. Journal of Volcanology and Geothermal Research 196, 91–110.
  • Frey, F.A., Garcia, M.O. & Roden, M.F. 1994. Geochemical characteristics of Koolau volcano: implications of intershield geochemical differences among Hawaiian volcanoes. Geochimica et Cosmochimica Acta 58, 1441–1462.
  • Frey, F.A., Gerlach, D.C., Hickey, R.L., Lopez-Escobar, L. & MunizagaVillavicencio, F. 1984. Petrogenesis of the Laguna del Maule volcanic complex, Chile. Contributions to Mineralogy and Petrology 88, 133–149.
  • Frey, H.M., Lange, R.A., Hall, C.M., Delgado-Granados, H. & Carmichael, I.S.E. 2007. A Pliocene ignimbrite flare-up along the Tepic-Zacoalco rift: evidence for the initial stages of rifting between the Jalisco block (Mexico) and North America. Geological Society of America Bulletin 119, 49–64.
  • Gamble, J.A., Smith, I.E.M., McCulloch, M.T., Graham, I.J. & Kokelaar, B.P. 1993. The geochemistry and petrogenesis of basalts from the Taupo volcanic zone and Kermadec Island arc, S.W. Pacific. Journal of Volcanology and Geothermal Research 54, 265–290.
  • Gamble, J.A., Wright, I.C., Woodhead, J.D. & McCulloch, M.T. 1995.
  • Arc and back-arc geochemistry in the southern Kermadec arcNgatoro basin and offshore Taupo volcanic zone, SW Pacific. In: Smellie, J.L. (ed), Volcanism Associated with Extension at Consuming Plate Margins. Geological Society Special Publication, London, 193–212. Gao, Y., Hou, Z., Kamber, B.S., Wei, R., Meng, X. & Zhao, R. 2007.
  • Lamproitic rocks from a continental collision zone: evidence for recycling of subducted Tethyan oceanic sediments in the mantle beneath southern Tibet. Journal of Petrology 48, 729– 7 Geldmacher, J. & Hoernle, K. 2000. The 72 Ma geochemical evolution of the Medeira hotspot (eastern North Atlantic): recycling of
  • Paleozoic (≤500 Ma) oceanic lithosphere. Earth and Planetary Science Letters 183, 73–92. Gerlach, D.C., Frey, F.A., Moreno-Roa, H. & Lopez-Escobar, L. 19 Recent volcanism in the Puyehue-Cordon Caulle region, southern Andes, Chile (40.5°S): petrogenesis of evolved lavas. Journal of Petrology 29, 333–382. Gibson, S.A., Thompson, R.N., Leat, P.T., Dickin, A.P., Morrison, M.A., Hendry, G.L. & Mitchell, J.G. 1992. Asthenosphere-derived magmatism in the Rio Grande rift, western USA: implications for continental break-up. In: Storey, B.C., Alabaster, T. & Pankhurst, R.J. (eds), Magmatism and the Causes of Continental
  • Break-Up. Geological Society Special Publication, London, 61– González Partida, E., Torres Rodriguez, V. & Birkle, P. 1997. PlioPleistocene volcanic history of the Ahuachapan geothermal system, El Salvador: the Concepción de Ataco caldera. Geothermics 26, 555–575.
  • Güleç, N. 1991. Crust-mantle interaction in western Turkey: implications from Sr and Nd isotope geochemistry of Tertiary and Quaternary volcanics. Geological Magazine 128, 417–435.
  • Haase, K.M., Goldschmidt, B. & Garbe-Schönberg, C.D. 2004. Petrogenesis of Tertiary continental intra-plate lavas from the Westerwald region, Germany. Journal of Petrology 45, 883–905.
  • Haase, K.M., Worthington, T.J., Stoffers, P., Garbe-Schönberg, D. & Wright, I. 2002. Mantle dynamics, element recycling, and magma genesis beneath the Kermadec arc-Havre Trough. Geochemistry Geophysics Geosystems 3, 1071, doi: 101029/2002GC00035.
  • Halama, R., Boudon, G., Villemant, B., Joron, J.L., Le Friant, A. & Komorowski, J.C. 2006. Pre-eruptive crystallization conditions of mafic and silicic magmas at the Plat Pays volcanic complex, Dominica (Lesser Antilles). Journal of Volcanology and Geothermal Research 153, 200–220.
  • Han, B.F., Wang, S.G. & Kagami, H. 1999. Trace element and NdSr isotope constraints on origin of the Chifeng flood basalts, North China. Chemical Geology 155, 187–199.
  • Handley, H.K., Macpherson, C.G., Davidson, J.P., Berlo, K. & Lowry, D. 200 Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen Volcanic Complex. Journal of Petrology 48, 1155–1183.
  • Hart, W.K., WoldeGabriel, G., Walter, R.C. & Mertzman, S.A. 1989. Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. Journal of Geophysical Research 94, 7731–7748.
  • Hazlett, R.W. 1987. Geology of San Cristobal volcanic complex, Nicaragua. Journal of Volcanology and Geothermal Research 33, 223–230.
  • Hekinian, R., Cheminée, J.L., Dubois, J., Stoffers, P., Scott, S., Guivel, C., Garbe-Schönberg, D., Devey, C., Bourdon, B., Lackschewitz, K., McMurtry, G. & Le Drezen, E. 2003. The Pitcairn hotspot in the South Pacific: distribution and composition of submarine volcanic sequences. Journal of Volcanology and Geothermal Research 121, 219–245.
  • Hergt, J.M. & Woodhead, J.D. 2007. A critical evaluation of recent models for Lau–Tonga arc–backarc basin magmatic evolution. Chemical Geology 245, 9–44.
  • Hickey, R.L. & Frey, F.A. 1982. Geochemical characteristics of boninite series volcanics: implications for their source. Geochimica et Cosmochimica Acta 46, 2099–2115.
  • Hickey, R.L., Frey, F.A., Gerlach, D.C. & Lopez-Escobar, L. 1986. Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°-41°S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. Journal of Geophysical Research 91, 5963–5983.
  • Hickey-Vargas, R., Moreno Roa, H., Lopez Escobar, L. & Frey, F.A. 19 Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanin volcanic chain (39.5°S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contributions to Mineralogy and Petrology 103, 361–386. Hidalgo, S., Monzier, M., Martin, H., Chazot, G., Eissen, J.P. & Cotten, J. 200 Adakitic magmas in the Ecuadorian volcanic front: petrogenesis of the Iliniza volcanic complex (Ecuador). Journal of Volcanology and Geothermal Research 159, 366–392. Hildreth, W., Fierstein, J., Siems, D.F., Budahn, J.R. & Ruíz, J. 200 Rear-arc vs. arc-front volcanoes in the Katmai reach of the Alaska peninsula: a critical appraisal of across-arc compositional variation. Contributions to Mineralogy and Petrology 147, 243–275. Hirotani, S. & Ban, M. 2006. Origin of silicic magma and magma feeding system of the Shirataka volcano, NE Japan. Journal of
  • Volcanology and Geothermal Research 156, 229–251. Ho, K.S., Chen, J.C. & Juang, W.S. 2000. Geochronology and geochemistry of late Cenozoic basalts from Leiqiong area, southern China. Journal of Asian Earth Sciences 18, 307–324.
  • Hoang, N., Itoh, J.I. & Miyagi, I. 2011. Subduction components in
  • Pleistocene to recent Kurile arc magmas in NE Hokkaido, Japan. Journal of Volcanology and Geothermal Research 200, 255–266. Hole, M.J., Saunders, A.D., Marriner, G.F. & Tarney, J. 1984. Subduction of pelagic sediments: implications for the origin of
  • Ce-Anomalous basalts from the Marianas Islands. Journal of the Geological Society of London, 141, 453–472. Holm, P.M., Wilson, J.R., Christensen, B.P., Hansen, L., Hansen, S.L., Hein, K.M., Mortensen, A.K., Pedersen, R., Plesner, S. & Runge, M.K. 2006. Sampling the Cape Verde mantle plume: evolution of melt compositions on Santo Antão, Cape Verde Islands.
  • Journal of Petrology 47, 145–189. Hoogewerff, J.A., van Bergen, M.J., Vroon, P.Z., Hertogen, J., Wordel, R., Sneyers, A., Nasution, A., Varekamp, J.C., Moens, H.L.E. & Mouchel, D. 1997. U-series, Sr-Nd-Pb isotope and trace-element systematics across an active island arc-continent collision zone: implications for element transfer at the slab-wedge interface.
  • Geochimica et Cosmochimica Acta 61, 1057–1072.
  • Hsu, C.N., Chen, J.C. & Ho, K.S. 2000. Geochemistry of Cenozoic volcanic rocks from Kirin Province, northeast China. Geochemical Journal 34, 33–58.
  • Huang, Y., Hawkesworth, C., Smith, I., van Calsteren, P. & Black, P. 2000. Geochemistry of late Cenozoic basaltic volcanism in
  • Northland and Coromandel, New Zealand: implications for mantle enrichment processes. Chemical Geology 164, 219–238. Huijsmans, J.P.P., Barton, M. & Salters, V.J.M. 1988. Geochemistry and evolution of the calc-alkaline volcanic complex of Santorini, Aegean Sea, Greece. Journal of Volcanology and Geothermal Research 34, 283–306.
  • Ilbeyli, N., Pearce, J.A., Thirlwall, M.F. & Mitchell, J.G. 2004. Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos 72, 163–182.
  • Innocenti, F., Agostini, S., Di Vincenzo, G., Doglioni, C., Manetti, P., Savaşçin, M.Y. & Tonarini, S. 2005. Neogene and Quaternary volcanism in western Anatolia: magma sources and geodynamic evolution. Marine Geology 221, 397–421.
  • Innocenti, F. & Mazzuoli, R. 1972. Petrology of the Izmir-Karaburun Volcanic Area, West Turkey. Bulletin of Volcanology 36, 83–104.
  • Ishikawa, T., Tera, F. & Nakazawa, T. 2001. Boron isotope and trace element systematics of the 3 volcanic zones in the Kamchatka arc. Geochimica et Cosmochimica Acta 65, 4523–4537.
  • Ishizuka, O., Taylor, R.N., Milton, T.J. & Nesbitt, R. 2003. Fluid mantle interaction in an intra-oceanic arc: constraints from high-precision Pb isotopes. Earth and Planetary Science Letters 211, 221–236.
  • Ishizuka, O., Taylor, R.N., Milton, J.A., Nesbitt, R.W., Yuasa, M. & Sakamoto, I. 2006. Variation in the mantle sources of the northern Izu arc with time and space — constraints from highprecision Pb isotopes. Journal of Volcanology and Geothermal Research 156, 266–290.
  • Izbekov, P.E., Eichelberger, J.C. & Ivanov, B.V. 2004. The 1996 eruption of Karymsky volcano, Kamchatka: historical record of basaltic replenishment of an andesite reservoir. Journal of Petrology 45, 2325–2345.
  • Johnson, C.M. & Lipman, P.W. 1988. Origin of metaluminous and alkaline volcanic rocks of the Latir volcanic field, northern Rio Grande rift, New Mexico. Contributions to Mineralogy and Petrology 100, 107–128.
  • Johnson, R.W., Knutson, J. & Taylor, S.R. 1989. Intraplate Volcanism in Eastern Australia and New Zealand. Australian Academy of Science and Cambridge University Press, Cambridge.
  • Jutzeler, M., Schmincke, H.U. & Sumita, M. 2010. The incrementally zoned Miocene Ayagaures ignimbrite (Gran Canaria, Canary Islands). Journal of Volcanology and Geothermal Research 196, 1–
  • Kabeto, K., Sawada, Y., Iizumi, S. & Wakatsuki, T. 2001. Mantle sources and magma-crust interactions in volcanic rocks from northern Kenya rift: geochemical evidence. Lithos 56, 111–136.
  • Kampunzu, A.B. & Mohr, P. 1991. Magmatic evolution and petrogenesis in the East African rift system. In: Kampunzu, A.B. & Lubala, R.T. (eds), Magmatism in Extensional Structural Settings. Springer Verlag, Berlin, 85–136.
  • Karsli, O., Chen, B., Uysal, I., Aydin, F., Wijbrans, J.R. & Kandemir, R. 200 Elemental and Sr-Nd-Pb isotopic geochemistry of the most recent Quaternary volcanism in the Erzincan basin, Eastern Turkey: framework for the evaluation of basalt-lower crust interaction. Lithos 106, 55–70. Kay, S.M. & Kay, R.W. 1994. Aleutian magmas in space and time. In: Plafker, G. & Berg, H.C. (eds), The Geology of North America. Geological Society of America, Boulder, CO, USA, 687–722.
  • Kay, S.M., Kay, R.W. & Citron, G.P. 1982. Tectonic controls on tholeiitic and calc-alkaline magmatism in the Aleutian arc. Journal of Geophysical Research 87, 4051–4072.
  • Kay, S.M., Maksaev, V., Moscoso, R., Mpodozis, C. & Nasi, C. 1987. Probing the evolving Andean lithosphere: mid-late Tertiary magmatism in Chile (29°30°30’S) over the modern zone of subhorizontal subduction. Journal of Geophysical Research 92, 6173–6189.
  • Kay, S.M., Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C. & Gordillo, C.E. 1988. Tertiary Andean magmatism in Chile and Argentina between 28°S and 33°S: correlation of magmatic chemistry with a changing Benioff zone. Journal of South
  • American Earth Sciences 1, 21–38. Kelly, P.J., Kyle, P.R., Dunbar, N.W. & Sims, K.W.W. 2008. Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972-2004 and comparison with older lavas. Journal of Volcanology and Geothermal Research 177, 589–605.
  • Kempton, P.D., Fitton, J.G., Hawkesworth, C.J. & Ormerod, D.S. 1991.
  • Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the Southwestern United States. Journal of Geophysical Research 96, 13713–13735.
  • Kepezhinskas, P., McDermott, F., Defant, M.J., Hochstaedter, A., Drummond, M.S., Hawkesworth, C.J., Koloskov, A., Maury, R.C. & Bellon, H. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochimica et Cosmochimica Acta 61, 577–600.
  • Keskin, M., Pearce, J.A. & Mitchell, J.G. 1998. Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum-Kars Plateau, northeastern Turkey. Journal of Volcanology and Geothermal Research 85, 355–404.
  • Kimura, J.I., Manton, W.I., Sun, C.H., Iizumi, S., Yoshida, T. & Stern, R.J. 2002. Chemical diversity of the Ueno basalts, Central
  • Japan: identification of mantle and crustal contributions to arc basalts. Journal of Petrology 43, 1923–1946.
  • Kimura, J.I. & Yoshida, T. 2006. Contributions of slab fluid, mantle wedge and crust to the origin of Quaternary lavas in the NE
  • Japan arc. Journal of Petrology 47, 2185–2232.
  • Kita, I., Yamamoto, M., Asakawa, Y., Nakagawa, M., Taguchi, S. & Hasegawa, H. 2001. Contemporaneous ascent of within-plate type and island-arc type magmas in the Beppu-Shimabara graben system, Kyushu island, Japan. Journal of Volcanology and Geothermal Research 111, 99–109.
  • Knittel, U., Hegner, E., Bau, M. & Satir, M. 1997. Enrichment processes in the sub-arc mantle: a Sr-Nd-Pb isotopic and REE study of primitive arc basalts from the Philippines. The Canadian Mineralogist 35, 327–346.
  • Kuritani, T., Kitagawa, H. & Nakamura, E. 2005. Assimilation and fractional crystallization controlled by transport process of crustal melt: implications from an alkali basalt–dacite suite from Rishiri Volcano, Japan. Journal of Petrology 46, 1421– 14
  • Kuritani, T., Yokoyama, T. & Nakamura, E. 2008. Generation of reararc magmas induced by influx of slab-derived supercritical liquids: implications from alkali basalt lavas from Rishiri volcano, Kurile arc. Journal of Petrology 49, 1319–1342.
  • Lai, Y.M., Song, S.R. & Iizuka, Y. 2008. Magma mingling in the Tungho area, Coastal Range of eastern Taiwan. Journal of
  • Volcanology and Geothermal Research 178, 608–623. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B. 1986.
  • A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745–750. Le Roex, A.P., Späth, A. & Zartman, R.E. 2001. Lithospheric thickness beneath the southern Kenya rift: implications from basalt geochemistry. Contributions to Mineralogy and Petrology 142, 89–106.
  • Lindsay, J.M., Trumbull, R.B. & Siebel, W. 2005. Geochemistry and petrogenesis of late Pleistocene to Recent volcanism in southern Dominica, Lesser Antilles. Journal of Volcanology and Geothermal Research 148, 253–394.
  • Lipman, P.W., Rhodes, R.M. & Dalrymple, G.B. 1990. The Ninole Basalt - Implications for the structural evolution of Mauna Loa volcano, Hawaii. Bulletin of Volcanology 53, 1–19.
  • Liu, C.Q., Masuda, A. & Xie, G.H. 1992. Isotope and trace-element geochemistry of alkali basalts and associated megacrysts from the Huangyishan volcano, Kuandian, Liaoning, NE China. Chemical Geology 97, 219–231.
  • Lloyd, F.E., Huntingdon, A.T., Davies, G.R. & Nixon, P.H. 1991. Phanerozoic volcanism of southern Uganda: a case for regional K and LILE enrichment of the lithosphere beneath a domed and rifted continental plate. In: Kampunzu, A.B. & Lubala, R.T. (eds), Magmatism in Extensional Structural Settings. Springer Verlag, Berlin, 23–72.
  • López-Escobar, L., Kilian, R., Kempton, P.D. & Tagiri, M. 1993. Petrography and geochemistry of Quaternary rocks from the southern volcanic zone of the Andes between 41°30′ and 46°00′S, Chile. Revista Geológica de Chile 20, 33–35.
  • López-Escobar, L., Tagiri, M. & Vergara, M. 1991. Geochemical features of southern Andes Quaternary volcanics between 41º5’ and 43º00’S. Geological Society of America Special Paper 265, 45–56.
  • Lopez-Escobar, L., Vergara, M. & Frey, F.A. 1981. Petrology and geochemistry of lavas from Antuco volcano, a basaltic volcano of the southern Andes (37°25’). Journal of Volcanology and Geothermal Research 11, 329–352.
  • Luhr, J.F. & Haldar, D. 2006. Barren island volcano (NE Indian ocean): island-arc high-alumina basalts produced by troctolite contamination. Journal of Volcanology and Geothermal Research 149, 177–212.
  • Macdonald, R., Belkin, H.E., Fitton, J.G., Rogers, N.W., Nejbert, K., Tindle, A.G. & Marshall, A.S. 2008. The roles of fractional crystallization, magma mixing, crystal mush remobilization, and volatile-melt interactions in the genesis of young basaltperalkaline rhyolite suite, the Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology 49, 1515–1547.
  • Macdonald, R., Davies, G.R., Upton, B.G.J., Denkley, P.N., Smith, M. & Leat, P.T. 1995. Petrogenesis of Silali volcano, Gregory rift, Kenya. Journal of the Geological Society of London, 152, 703–720.
  • Mahéo, G., Blichert-Toft, J., Pin, C., Guillot, S. & Pecher, A. 2009. Partial melting of mantle and crustal sources beneath south Karakorum, Pakistan: implications for the Miocene geodynamic evolution of the India-Asia convergence zone. Journal of Petrology 30, 427–449.
  • Maheshwari, A., Coltorti, M., Sial, A.N. & Mariano, G. 1996. Crustal influences in the petrogenesis of the Malani rhyolites, southwestern Rajasthan: combined trace element and oxygen isotope constraints. Journal of Geological Society of India 47, 611–619.
  • Maldonado, F., Budahn, J.R., Peters, L. & Unruh, D.M. 2006. Geology geochronology, and geochemistry of basaltic flows of the Cat
  • Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra central New Mexico. Canadian Journal of Earth Sciences 43, 1251–1268.
  • McDermott, F., Delfin F.G. Jr, Defant, M.J., Turner, S. & Maury, R. 200 The petrogenesis of volcanics from Mt. Bulusan and Mt. Mayon in the Bicol arc, the Philippines. Contributions to Mineralogy and Petrology 150, 652–670. McMillan, N.J., Dickin, A.P. & Haag, D. 2000. Evolution of magma source regions in the Rio Grande rift, southern New Mexico.
  • Geological Society of America Bulletin 112, 1582–1593.
  • Meschede, M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology 56, 207–218.
  • Middlemost, E.A.K. 1989. Iron oxidation ratios, norms, and the classification of volcanic rocks. Chemical Geology 77, 19–26.
  • Mitropoulos, P., Tarney, J., Saunders, A.D. & Marsh, N.G. 1987.
  • Petrogenesis of Cenozoic volcanic rocks from the Aegean island arc. Journal of Volcanology and Geothermal Research 32, 177–193. Mollel, G.F., Swisher C.C. 3rd, Feigenson, M.D. & Carr, M.J. 2008.
  • Geochemical evolution of Ngorongoro Caldera, Northern Tanzania: implications for crust–magma interaction. Earth and Planetary Science Letters 271, 337–347. Monzier, M., Danyushevsky, L.V., Crawford, A.J., Bellon, H. & Cotten, J. 1993. High-Mg andesites from the southern termination of the New Hebrides island arc (SW Pacific).
  • Journal of Volcanology and Geothermal Research 57, 193–217. Monzier, M., Robin, C., Eissen, J.P. & Cotten, J. 1997. Geochemistry vs. seismo-tectonics along the volcanic New Hebrides Central
  • Chain (Southwest Pacific). Journal of Volcanology and Geothermal Research 78, 1–29. Moriguti, T., Shibata, T. & Nakamura, E. 2004. Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition. Chemical Geology 212, 81–100.
  • Morrison, D.F. 1990. Multivariate Statistical Methods. 3rd ed. McGraw-Hill, New York.
  • Moyer, T.C. & Esperança, S. 1989. Geochemical and isotopic variations in a bimodal magma system: the Kaiser Spring volcanic field, Arizona. Journal of Geophysical Research 94, 7841–8759.
  • Myers, J.D., Marsh, B.D., Frost, C.D. & Linton, J.A. 2002. Petrologic constraints on the spatial distribution of crustal magma chambers, Atka volcanic center, central Aleutian arc. Contributions to Mineralogy and Petrology 143, 567–586.
  • Myers, J.D., Marsh, B.D. & Sinha, A.K. 1985. Strontium isotopic and selected trace element variations between two Aleutian volcanic centers (Adak and Atka): implications for the development of arc volcanic plumbing systems. Contributions to Mineralogy and Petrology 91, 221–234.
  • Nakagawa, M., Ishizuka, Y., Kudo, T., Yoshimoto, M., Hirose, W., Ishizaki, Y., Gouchi, N., Katsui, Y., Solovyow, A.W., Steinberg, G.S. & Abdurakhmanov, A.I. 2002. Tyatya volcano, southwestern Kuril arc: recent eruptive activity inferred from widespread tephra. The Island Arc 11, 236–254.
  • Nick, K. 1988. Mineralogische, Geochemische und Petrographische Untersuchungen in der Sierra de San Carlos, Mexiko. PhD, Universitaet (TH) Fridericiana Karlsruhe, Karlsruhe, Germany.
  • Nonnotte, P., Benoit, M., Le Gall, B., Hémond, C., Rolet, J. & Cotten, J. 20 Petrology and geochemistry of alkaline lava series, Kilimanjaro, Tanzania: new constraints on petrogenetic processes. Geological Society of America Special Paper 478, 127– 1 Nye, C.J. & Reid, M.R. 1986. Geochemistry of primary and least fractionated lavas from Okmok volcano, central Aleutians: implications for arc magma genesis. Journal of Geophysical Research 91, 10271–10287.
  • Ohara, Y., Fujioka, K., Ishizuka, O. & Ishii, T. 2002. Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine Sea plate. Chemical Geology 189, 35–53.
  • Ohba, T., Kimura, Y. & Fujimaki, H. 2007. High-magnesian andesite produced by two-stage magma mixing: a case study from Hachimantai, northern Honshu, Japan. Journal of Petrology 48, 627–645.
  • Ohba, T., Matsuoka, K., Kimura, Y., Ishikawa, H. & Fujimaki, H. 200 Deep crystallization differentiation of arc tholeiite basalt magmas from Northern Honshu Arc, Japan. Journal of Petrology 50, 1025–1046.
  • Omrani, J., Agard, P.H.W., Benoit, M., Prouteau, G. & Jolivet, L. 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamics consequences. Lithos 106, 380–398.
  • Palacz, Z.A. & Saunders, A.D. 1986. Coupled trace element and isotope enrichment in the Cook-Austral-Samoa islands, southwest pacific. Earth and Planetary Science Letters 79, 270–280.
  • Palacz, Z.A. & Wolff, J.A. 1989. Strontium, neodymium, and lead isotope characteristics of the Granadilla Pumice, Tenerife: a study of the causes of strontium isotope disequilibrium in felsic pyroclastic deposits. Geological Society of London Special Publications 42, 147–159.
  • Parat, F., Dungan, M.A. & Lipman, P.W. 2005. Contemporaneous trachyandesitic and calc-alkaline volcanism of the Huerto andesite, San Juan Volcanic Field, Colorado, USA. Journal of Petroleum Geology 46, 859–891.
  • Pardo, N., Avellán, D.R., Macías, J.L., Scolamacchia, T. & Rodríguez, D. 200 The ~1245 yr BP Asososca maar: new advances on recent volcanic stratigraphy of Managua (Nicaragua) and hazard implications. Journal of Volcanology and Geothermal Research 176, 493–512.
  • Paslick, C., Halliday, A., James, D. & Dawson, J.B. 1995. Enrichment of the continental lithosphere by OIB melts: isotopic evidence from the volcanic province of northern Tanzania. Earth and Planetary Science Letters 130, 109–126.
  • Patino, L.C., Velbel, M.A., Price, J.R. & Wade, J.A. 2003. Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala. Chemical Geology 202, 343–364.
  • Pearce, J.A. & Cann, J.R. 1971. Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y. Earth and Planetary
  • Science Letters 12, 339–349. Pearce, J.A. & Cann, J.R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary
  • Science Letters 19, 290–300. Pearce, J.A., Harris, N.B.W. & Tindle, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–983.
  • Peate, D.W., Pearce, J.A., Hawkesworth, C.J., Colley, H., Edwards, C.M.H. & Hirose, K. 1997. Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition. Journal of Petrology 38, 1331–1358.
  • Peccerillo, A., Barberio, M.R., Yirgu, G., Ayalew, D., Barbieri, M. & Wu, T.W. 2003. Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. Journal of Petrology 44, 2003–2032.
  • Peccerillo, A., Donati, C., Santo, A.P., Orlando, A., Yirgu, G. & Ayalew, D. 2007. Petrogenesis of silicic peralkaline rocks in the Ethiopian Rift: geochemical evidence and volcanological implications. Journal of African Earth Sciences 48, 161–173.
  • Peng, Z.C., Zartman, R.E., Futa, K. & Chen, D.G. 1986. Pb-, Srand Nd-isotopic systematics and chemical characteristics of
  • Cenozoic basalts, eastern China. Chemical Geology 59, 3–33. Pe-Piper, G. & Moulton, B. 2008. Magma evolution in the PliocenePleistocene of Kos, South Aegean arc (Greece). Lithos 106, 110–124.
  • Perry, F.V., Baldridge, W.S., DePaolo, D.J. & Shafiqullah, M. 1990.
  • Evolution of a magmatic system during continental extension: the mount Taylor volcanic field, New Mexico. Journal of Geophysical Research 95, 19327–19348.
  • Polat, A. 2009. The geochemistry of Neoarchean (ca. 2700 Ma) tholeiitic basalts, transitional to alkaline basalts, and gabbros, Wawa Subprovince, Canada: implications for petrogenetic and geodynamic processes. Precambrian Research 168, 83–105.
  • Polat, A., Kerrich, R. & Wyman, D.A. 1999. Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle. Precambrian Research 94, 139–173.
  • Potter, L.S. 1996. Chemical variation along strike in feldspathoidal rocks of the Eastern Alkalic Belt, Trans-Pecos magmatic province, Texas and New Mexico. Canadian Mineralogist 34, 241–264.
  • Prægel, N.O. & Holm, P.M. 2006. Lithospheric contributions to highMgO basanites from the Cumbre Vieja volcano, La Palma, Canary Islands and evidence for temporal variation in plume influence. Journal of Volcanology and Geothermal Research 149, 213–239.
  • Price, R.C., Gray, C.M. & Frey, F.A. 1997. Strontium isotopic and trace element heterogeneity in the plains basalts of the Newer Volcanic Province, Victoria, Australia. Geochimica et Cosmochimica Acta 61, 171–192.
  • Reagan, M.K. & Gill, J.B. 1989. Coexisting calcalkaline and high-niobium basalts from Turrialba volcano, Costa Rica: implications for residual titanates in arc magma sources. Journal of Geophysical Research 94, 4619–4633.
  • Reagan, M.K., Hanan, B.B., Heizler, M.T., Hartman, B.S. & HickeyVargas, R. 2008. Petrogenesis of volcanic rocks from Saipan and Rota, Mariana Islands, and implications for evolution of Nascent Island Arcs. Journal of Petrology 49, 441–464.
  • Reagan, M.K. & Meijer, A. 1984. Geology and geochemistry of early arc-volcanic rocks from Guam. Geological Society of America Bulletin 95, 701–713.
  • Reagan, M.K., Sims, K.W.W., Erich, J., Thomas, R.B., Cheng, H., Edwards, R.L., Layne, G. & Ball, L. 2003. Time-scales of differentiation from mafic parents to rhyolite in North American continental arcs. Journal of Petrology 44, 1703–1726.
  • Reichardt, H., Weinberg, R.F., Andersen, U.B. & Fanning, C.M. 2010. Hybridization of granitic magmas in the source: the origin of the Karakoram Batholith, Ladakh, NW India. Lithos 116, 249–272.
  • Robin, C., Eissen, J.P., Samaniego, P., Martin, H., Hall, M. & Cotten, J. 200 Evolution of the late Pleistocene Mojanda-Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. Bulletin of Volcanology 71, 233–258. Rodríguez, C., Sellés, D., Dungan, M., Langmuir, C. & Leeman, W. 200 Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36.2°S) Andean southern volcanic zone, central Chile. Journal of Petrology 18, 2033–2061.
  • Rogers, N.W., Evans, P.J., Blake, S., Scott, S.C. & Hawkesworth, C.J. 200 Rates and timescales of fractional crystallization from 238 U– 230 Th– 226 Ra disequilibria in trachyte lavas from Longonot Volcano, Kenya. Journal of Petrology 45, 1747–1776.
  • Rollinson, H.R. 1993. Discriminating between tectonic environments using geochemical data. In: Rollinson, H.R. (ed), Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical, Essex, UK, 171–214.
  • Romick, J.D., Perfit, M.R., Swanson, S.E. & Shuster, R.D. 1990. Magmatism in the eastern Aleutian arc: temporal characteristic of igneous activity on Akutan Island. Contributions to Mineralogy and Petrology 104, 700–721.
  • Ronga, F., Lustrino, M., Marzoli, A. & Melluso, L. 2010. Petrogenesis of a basalt-comendite-pantellerite rock suite: the Boseti Volcanic Complex (Main Ethiopian Rift. Mineralogy and Petrology 98, 227–243.
  • Rooney, T., Furman, T., Bastow, I., Ayalew, D. & Yirgu, G. 2007.
  • Lithospheric modification during crustal extension in the Main Ethiopian Rift. Journal of Geophysical Research 112, doi:10210.11029/12006JB004916.
  • Rotolo, S.G. & Castorina, F. 1998. Transition from midly-tholeiitic to calc-alkaline suite: the case of Chicontepec volcanic centre, El Salvador, Central America. Journal of Volcanology and Geothermal Research 86, 117–136.
  • Rutanen, H. & Andersson, U.B. 2009. Mafic plutonic rocks in a continental-arc setting: geochemistry of 1.87-1.78 Ga rocks from south-central Sweden and models of their palaeotectonic setting. Geological Journal, 44, DOI: 10.1002/gj.1133.
  • Ryder, C.H., Gill, J.B., Tepley F. 3rd, Ramos, F. & Reagan, M. 2006.
  • Closed- to open-system differentiation at Arenal volcano 1968200 Journal of Volcanology and Geothermal Research 157, 75–
  • Sakuyama, M. & Nesbitt, R.W. 1986. Geochemistry of the Quaternary volcanic rocks of the Northeast Japan arc. Journal of Volcanology and Geothermal Research 29, 413–450.
  • Sakuyama, T., Ozawa, K., Sumino, H. & Nagao, K. 2009. Progressive melt extraction from upwelling mantle constrained by the Kita-Matsuura basalts in NW Kyushu, SW Japan. Journal of Petrology 50, 725–779.
  • Samaniego, P., Barba, D., Robin, C., Fornari, M. & Bernard, B. 2012.
  • Eruptive history of Chimborazo volcano (Ecuador): a large, ice-capped and hazardous compound volcano in the Northern Andes. Journal of Volcanology and Geothermal Research 221– 222, 35–51. Sano, T., Hasenaka, T., Shimaoka, A., Yonesawa, C. & Fukuoka, T. 200 Boron contents of Japan trench sediments and Iwate basaltic lavas, northeast Japan arc: estimation of sedimentderived fluid contribution in mantle wedge. Earth and Planetary Science Letters 186, 187–198. Sato, M., Shuto, K. & Yagi, M. 2007. Mixing of asthenospheric and lithospheric mantle-derived basalt magmas as shown by alongarc variation in Sr and Nd isotopic compositions of Early
  • Miocene basalts from back-arc margin of the NE Japan arc. Lithos 96, 453–474. Saunders, A.D., Tarney, J., Stern, C.R. & Dalziel, I.W.D. 1979. Geochemistry of Mesozoic marginal basin floor igneous rocks from southern Chile. Geological Society of America Bulletin 90, 237–258.
  • Schmitz, M.D. & Smith, I.E.M. 2004. The petrology of the Rotoiti eruption sequence, Taupo Volcanic Zone: an example of fractionation and mixing in a rhyolitic system. Journal of Petrology 45, 2045–2066.
  • Sendjaja, Y.A., Kimura, J.I. & Sunardi, E. 2009. Across-arc geochemical variation of Quaternary lavas in west Java, Indonesia: mass-balance elucidation using arc basalt simulator model. Island Arc 18, 201–224.
  • Seyitoglu, G., Anderson, D., Nowell, G. & Scott, B. 1997. The evolution from Miocene potassic to Quaternary sodic magmatism in western Turkey: implications for enrichment processes in the lithospheric mantle. Journal of Volcanology and Geothermal Research 76, 127–147.
  • Seymour, K.S. & Vlassopoulos, D. 1992. Magma mixing at Nisyros volcano, as inferred from incompatible trace-element systematics. Journal of Volcanology and Geothermal Research 50, 273–299.
  • Sharma, K.K. 2004. The Neoproterozoic Malani magmatism of the northwestern Indian shield: implications for crust-building processes. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences) 113, 795–807.
  • Shervais, J.W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101–118.
  • Shinjo, R. 1998. Petrochemistry and tectonic significance of the emerged late Cenozoic basalts behind the Okinawa Trough Ryukyu arc system. Journal of Volcanology and Geothermal Research 80, 39–53.
  • Shinjo, R. 1999. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough-Ryukyu arc system. Chemical Geology 157, 69–88.
  • Shinjo, R., Woodhead, J.D. & Hergt, J.M. 2000. Geochemical variation within the northern Ryukyu: magma source compositions and geodynamic implications. Contributions to Mineralogy and Petrology 140, 263–282.
  • Shukuno, H., Tamura, Y., Tani, K., Chang, Q., Suzuki, T. & Fiske, R.S. 2006. Origin of silicic magmas and the compositional gap at Sumisu submarine caldera, Izu-Bonin arc, Japan. Journal of Volcanology and Geothermal Research 156, 187–216.
  • Shuto, K., Hirahara, Y., Ishimoto, H., Aoki, A., Jinbo, A. & Goto, Y. 200 Sr and Nd isotopic compositions of the magma source beneath north Hokkaido, Japan: comparison with the back-arc side in the NE Japan arc. Journal of Volcanology and Geothermal Research 134, 57–75. Shuto, K., Ishimoto, H., Hirahara, Y., Sato, M., Matsui, K., Fujibayashi, N., Takazawa, E., Yabuki, K., Sekine, M., Kato, M. & Rezanov, A.I. 200 Geochemical secular variation of magma source during Early to Middle Miocene time in the Niigata area, NE Japan: asthenospheric mantle upwelling during back-arc basin opening. Lithos 86, 1–33. Singer, B.S. & Kudo, A.M. 1986. Assimilation-fractional crystallization of Polvadera Group rocks in the northwestern Jemez volcanic field, New Mexico. Contributions to Mineralogy and Petrology 94, 374–386.
  • Singer, B.S., Myers, J.D. & Frost, C.D. 1992. Mid-Pleistocene lavas from the Seguam volcanic center, central Aleutian arc: closed-system fractional crystallization of a basalt to rhyodacite eruptive suite. Contributions to Mineralogy and Petrology 110, 87–112.
  • Singh, A.K. & Vallinayagam, G. 2004. Geochemistry and petrogenesis of anorogenic basic volcanic-plutonic rocks of the Kundal area, Malani igneous suite, western Rajasthan, India. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences) 113, 667–681.
  • Smellie, J.L. 1983. A geochemical overview of subduction-related igneous activity in the South Shetland Islands, Lesser Antarctica. In: Oliver, R.L., James, P.R. & Jago, J.B. (eds), Antarctic Earth Science. Australian Academy of Sciences and Cambridge University Press, Cambridge, 352–356.
  • Smith, I.E.M., Stewart, R.B. & Price, R.C. 2003. The petrology of a large intra-oceanic silicic eruption: the Sandy Bay tephra, Kermadec arc, southwest Pacific. Journal of Volcanology and Geothermal Research 124, 173–194.
  • Smith, T.E., Thirlwall, M.F. & MacPherson, C. 1996. Trace element and isotope geochemistry of the volcanic rocks of Bequia, Grenadine Islands, Lesser Antilles Arc: a study of subduction enrichment and intra-crustal contamination. Journal of Petrology 37, 117–143.
  • Spengler, S.R. & Garcia, M.O. 1988. Geochemistry of the Hawi lavas, Kohala Volcano, Hawaii. Contributions to Mineralogy and Petrology 99, 90–104.
  • Spera, F.J. & Bohrson, W.A. 2004. Open-system magma chamber evolution: an energy-constrained geochemical model incorporating the effects of concurrent eruption, recharge, variable assimilation and fractional crystallization (ECE’RAcFC). Journal of Petrology 45, 2459–2480.
  • Sruoga, P., Llambías, E.J., Fauqué, L., Schonwandt, D. & Repol, D.G. 2005. Volcanological and geochemical evolution of the Diamante caldera-Maipo volcano complex in the southern
  • Andes of Argentina (34°10’S). Journal of South American Earth Sciences 19, 399–414. Stephenson, D. & Marshall, T.R. 1984. The petrology and mineralogy of Mt. Popa volcano and the nature of the late-Cenozoic Burma volcanic arc. Journal of the Geological Society of London 141, 747–762.
  • Stolz, A.J., Varne, R., Davies, G.R., Wheller, G.E. & Fodon, J.D. 1990.
  • Magma source components in an arc-continent collision zone: the Flores-Lembata sector, Sunda arc, Indonesia. Contributions to Mineralogy and Petrology 105, 585–601. Sussman, D. 1985. Apoyo caldera, Nicaragua: a major Quaternary silicic eruptive center. Journal of Volcanology and Geothermal Research 24, 249–282.
  • Suzuki, Y. & Nakada, S. 2007. Remobilization of highly crystalline felsic magma by injection of mafic magma: constraints from the middle sixth century eruption at Haruna volcano, Honshu, Japan. Journal of Petrology 48, 1543–1567.
  • Takanashi, K., Shuto, K. & Sato, M. 2011. Origin of Late Paleogene to
  • Neogene basalts and associated coeval felsic volcanic rocks in Southwest Hokkaido, northern NE Japan arc: constraints from Sr and Nd isotopes and major- and trace-element chemistry. Lithos 125, 368–392. Tamura, Y. 1994. Genesis of island arc magmas by mantle derived bimodal magmatism: evidence from the Shiraham group, Japan. Journal of Petrology 35, 619–645.
  • Tamura, Y., Tani, K., Chang, Q., Shukuno, H., Kawabata, H., Ishizuka, O. & Fiske, R.S. 2007. Wet and dry basalt magma evolution at
  • Torishima Volcano, Izu-Bonin Arc, Japan: the possible role of phengite in the downgoing slab. Journal of Petrology 48, 1999– 20
  • Tamura, Y., Yuhara, M., Ishii, T., Irino, N. & Shukuno, H. 2003.
  • Andesites and dacites from Daisen volcano, Japan: partial-tototal remelting of an andesite magma body. Journal of Petrology 44, 2243–2260.
  • Tatsumi, Y., Murasaki, M., Arsadi, E.M. & Nohda, S. 1991. Geochemistry of Quaternary lavas from NE Sulawesi: transfer of subduction components into the mantle wedge. Contributions to Mineralogy and Petrology 107, 137–149.
  • Tatsumi, Y., Murasaki, M. & Nohda, S. 1992. Across-arc variation of lava chemistry in the Izu-Bonin arc: identification of subduction components. Journal of Volcanology and Geothermal Research 49, 179–190.
  • Taylor, R.N. & Nesbitt, R.W. 1998. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth and Planetary Science Letters 164, 79–98.
  • Taylor, R.N., Nesbitt, R.W., Vidal, P., Harmon, R.S., Auvray, B. & Croudace, I.W. 1994. Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. Journal of Petrology 35, 577–617.
  • Taylor, S.R. & McLennan, S.M. 1995. The geochemical evolution of the continental crust. Review in Geophysics 33, 241–265.
  • Temel, A., Gündoğdu, M.N. & Gourgaud, A. 1998. Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research 85, 327–354.
  • Thirlwall, M.F. & Graham, A.M. 1984. Evolution of high-Ca, high-Sr C-series basalts from Grenada, Lesser Antilles: the effects of intra-crustal contamination. Journal of the Geological Society of London 141, 427–445.
  • Thirlwall, M.F., Graham, A.M., Arculus, R.J., Harmon, R.S. & Macpherson, C.G. 1996. Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles. Geochimica et Cosmochimica Acta 60, 4785–4810.
  • Tian, L., Castillo, P.R., Hawkins, J.W., Hilton, D.R., Hanan, B.B. & Pietruszka, A.J. 2008. Major and trace element and Sr-Nd isotope signatures of lava from the central Lau Basin: implications for the nature and influence of subduction components in the backarc mantle. Journal of Volcanology and Geothermal Research 178, 657–670.
  • Timm, C., Hoernle, K., Bogaard, P.V.D., Bindeman, I. & Weaver, S. 200 Geochemical evolution of intraplate volcanism at Banks Peninsula, New Zealand: interaction between asthenospheric and lithospheric melts. Journal of Petrology 50, 989–1023.
  • Togashi, S., Tanaka, T., Yoshida, T., Ishikawa, K.I., Fujinawa, A. & Kurasawa, H. 1992. Trace elements and Nd-Sr isotopes of island arc tholeiites from frontal arc of northeast Japan. Geochemical Journal 26, 261–277.
  • Tormey, D.R., Hickey-Vargas, R., Frey, F.A. & López-Escobar, L. 19 Recent lavas from the Andean volcanic front (33 to 42°S); interpretations of along-arc compositional variations. In: Harmon, R.S. & Rapela, C.W. (eds), Andean Magmatism and Its Tectonic Setting, Geological Society of America Special Paper. Geological Society of America, Boulder, CO, USA, 57–77. Torres-Alvarado, I.S., Verma, S.P., Palacios-Berruete, H., Guevara, M. & González-Castillo, O.Y. 2003. DC_Base: a database system to manage Nernst distribution coefficients and its application to partial melting modeling. Computers & Geosciences 29, 1191–
  • Toya, N., Ban, M. & Shinjo, R. 2005. Petrology of Aoso volcano, northeast Japan arc: temporal variation of the magma feeding system and nature of low-K amphibole andesite in the AosoOsore volcanic zone. Contributions to Mineralogy and Petrology 148, 566–581.
  • Trua, T., Deniel, C. & Mazzuoli, R. 1999. Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main
  • Ethiopian Rift (MER): geochemical and isotopic (Sr, Nd, Pb) evidence. Chemical Geology 155, 201–231. Turner, S. & Foden, J. 2001. U, Th and Ra disequilibria, Sr, Nd, and Pb isotope and trace element variations in Sunda arc lavas: predominance of a subducted sediment component.
  • Contributions to Mineralogy and Petrology 142, 43–57. Turner, S., Hawkesworth, C., Rogers, N. & King, P. 1997. U-Th isotope disequilibria and ocean island basalt generation in the Azores. Chemical Geology 139, 145–164.
  • Turner, S., Hawkesworth, C.J., Calsteren, P.V., Heath, E., Macdonald, R. & Black, S. 1996. U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth and Planetary Science Letters 142, 191–207.
  • Ujike, O. & Stix, J. 2000. Geochemistry and origins of Ueno and Ontake basaltic to andesitic rocks (<3 Ma) produced by distinct contributions of subduction components, central Japan. Journal of Volcanology and Geothermal Research 95, 49–64. van Bergen, M.J., Vroon, P.Z., Varekamp, J.C. & Poorter, R.P.E. 1992.
  • The origin of the potassic rock suite from Batu Tara volano (East Sunda Arc, Indonesia). Lithos 28, 261–282. Vergara, M., López-Escobar, L., Cancino, A. & Levi, B. 1991. The Pichidangui formation; some geochemical characteristics and tectonic implications of the Triassic marine volcanism in central Chile (31°55’S to 32°20’S). Geological Society of America Special Paper 265, 93–98.
  • Vergara, M., López-Escobar, L., Palma, J.L., Hickey-Vargas, R. & Roeschmann, C. 2004. Late Tertiary volcanic episodes in the area of the city of Santiago de Chile: new geochronological and geochemical data. Journal of South American Earth Sciences 17, 227–238.
  • Verma, S.K., Pandarinath, K. & Verma, S.P. 2012. Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multidimensional diagrams for acid rocks. International Geology Review 54, 325–347.
  • Verma, S.P. 2005. Estadística básica para el manejo de datos experimentales: aplicación en la Geoquímica (Geoquimiometría).
  • Universidad Nacional Autónoma de México, México, Mexico City. Verma, S.P. 2010. Statistical evaluation of bivariate, ternary, and discriminant function tectonomagmatic discrimination diagrams. Turkish Journal of Earth Sciences 19, 185–238.
  • Verma, S.P. 2012a. Application of multi-dimensional discrimination diagrams and probability calculations to acid rocks from Portugal and Spain. Comunicações Geológicas 99, 79–93.
  • Verma, S.P. 2012b. Geochemometrics. Revista Mexicana de Ciencias Geológicas 29, 276–298.
  • Verma, S.P. & Agrawal, S. 2011. New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Revista Mexicana de Ciencias Geológicas 28, 24–44.
  • Verma, S.P. & Díaz-González, L. 2012. Application of the discordant outlier detection and separation system in the geosciences. International Geology Review 54, 593–614.
  • Verma, S.P., Guevara, M. & Agrawal, S. 2006. Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. Journal of Earth System Science 115, 485–528.
  • Verma, S.P., Torres-Alvarado, I.S. & Sotelo-Rodríguez, Z.T. 200 SINCLAS: standard igneous norm and volcanic rock classification system. Computers & Geosciences 28, 711–715. Verwoerd, W.J., Erlank, A.J. & Kable, E.J.D. 1976. Geology and geochemistry of Bouvet Island. Proceedings of the Symposium on Andean and Antarctic Volcanology Problems, Santiago, Chile, 201–207.
  • Vespa, M., Keller, K. & Gertisser, R. 2006. Interplinian explosive activity of Santorini volcano (Greece) during the past 150,000 years. Journal of Volcanology and Geothermal Research 153, 262–286.
  • Vezzoli, L., Tibaldi, A., Renzulli, A., Menna, M. & Flude, S. 2008. Faulting-assisted lateral collapses and influence on shallow magma feeding system at Ollague volcano (Central Volcanic Zone, Chile-Bolivia Andes). Journal of Volcanology and Geothermal Research 171, 137–159.
  • Wade, J.A., Plank, T., Stern, R.J., Tollstrup, D.L., Gill, J.B., O’Leary, J.C., Eiler, J.M., Moore, R.B., Woodhead, J.D., Trusdell, F., Fischer, T.P. & Hilton, D.R. 2005. The May 2003 eruption of Anatahan volcano, Mariana Islands: geochemical evolution of a silicic island-arc volcano. Journal of Volcanology and Geothermal Research 146, 139–170.
  • Walker, J.A., Moulds, T.N., Zentilli, M. & Feigenson, M.D. 1991. Spatial and temporal variations in volcanics of the Andean Central volcanic zone (26 to 28°S). Geological Society of America Special Paper 265, 139–156.
  • Walker, J.A., Patino, L.C., Cameron, B.I. & Carr, M.J. 2000. Petrogenetic insights provided by compositional transects across the Central American arc: southeastern Guatemala and Honduras. Journal of Geophysical Research 105, 18949–18963.
  • Walker, J.A., Patino, L.C., Carr, M.J. & Feigenson, M.D. 2001. Slab control over HFSE depletions in central Nicaragua. Earth and Planetary Science Letters 192, 533–543.
  • Watt, S.F.L., Pyle, D.M. & Mather, T.A. 2011. Geología, petrología y geoquímica de los domos volcánicos del volcán Huequi, Chile meridional. Andean Geology 38, 335–348.
  • Weis, D., Frey, F.A., Leyrit, H. & Gautier, I. 1993. Kerguelen archipelago revisited: geochemical and isotopic study of the southeast province lavas. Earth and Planetary Science Letters 118, 101–119.
  • West, H.B., Garcia, M.O., Gerlach, D.C. & Romero, J. 1992. Geochemistry of tholeiites from Lanai, Hawaii. Contributions to
  • Mineralogy and Petrology 112, 520–542. Wheller, G.E., Varne, R., Foden, J.D. & Abbott, M.J. 1987. Geochemistry of Quaternary volcanism in the Sunda-Banda arc, Indonesia, and three-component genesis of island-arc basaltic magmas.
  • Journal of Volcanology and Geothermal Research 32, 137–160. Wolde, B., Asres, Z., Desta, Z. & Gonzalez, J.J. 1996. Neoproterozoic zirconium-depleted boninite and tholeitic series rocks from
  • Adola, southern Ethiopia. Precambrian Research 80, 261–279. Wood, D.A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 50, 11–30.
  • Woodhead, J.D. 1988. The origin of geochemical variations in Mariana lavas: a general model for petrogenesis in intra-oceanic island arcs. Journal of Petrology 29, 805–830.
  • Woodhead, J.D., Eggins, S.M. & Johnson, R.W. 1998. Magma genesis in the New Britain Island Arc: further insights into melting and mass transfer processes. Journal of Petrology 39, 1641–1668.
  • Woodhead, J.D. & Johnson, R.W. 1993. Isotopic and trace-element profiles across the New Britain island arc, Papua New Guinea.
  • Contributions to Mineralogy and Petrology 113, 479–491. Wright, I.C., Worthington, T.J. & Gamble, J.A. 2006. New multibeam and geochemistry of the 30°-35°S sector, and overview of southern Kermadec arc volcanism. Journal of Volcanology and Geothermal Research 149, 263–296.
  • Xu, G., Frey, F.A., Clague, D.A., Abouchami, W., Blichert-Toft, J., Cousens, B. & Weisler, M. 2007. Geochemical characteristics of
  • West Molokai shield- and postshield-stage lavas: constraints on Hawaiian plume models. Geochemistry Geophysics Geosystems 8, 1–40. Xu, G., Frey, F.A., Clague, D.A., Weis, D. & Beeson, M.H. 2005.
  • East Molokai and other Kea-trend volcanoes: magmatic processes and sources as they migrate away from the Hawaiian hot spot. Geochemistry Geophysics Geosystems 6, doi: 05001029/02004GC000830.
  • Xu, Y.G., Ma, J.L., Frey, F.A., Feigenson, M.D. & Liu, J.F. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western
  • North China Craton. Chemical Geology 224, 247–271. Zellmer, G., Turner, S. & Hawkesworth, C. 2000. Timescales of destructive plate margin magmatism: new insights from Santorini, Aegean volcanic arc. Earth and Planetary Science Letters 174, 265–281.
  • Zellmer, G.F., Hawkesworth, C.J., Sparks, R.S.J., Thomas, L.E., Harford, C.L., Brewer, T.S. & Loughlin, S.C. 2003. Geochemical evolution of the Soufrière Hills volcano, Montserrat, Lesser Antilles volcanic arc. Journal of Petrology 44, 1349–1374.
  • Zhang, M., Suddaby, P., Thompson, R.N., Thirlwall, M.F. & Menzies, M.A. 1995. Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. Journal of Petrology 36, 1275–1303.
  • Zhao, Z., Mo, X., Dilek, Y., Niu, Y., DePaolo, D.J., Robinson, P., Zhu, D., Sun, C., Dong, G., Zhou, S., Luo, Z. & Hou, Z. 2009. Geochemical and Sr-Nd-O isotopic compositions of the postcollisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos 113, 190–212.
  • Zhi, X., Song, Y., Frey, F.A., Feng, J. & Zhai, M. 1990. Geochemistry of Hannuoba basalts, eastern China: constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology 88, 1–33.
  • Zhuravlev, D.Z., Tsvetkov, A.A., Zhuravlev, A.Z., Gladkov, N.G. & Chernysheva, I.V. 1987. 143 Nd/ 144 Nd and 87 Sr/ 86 Sr ratios in recent magmatic rocks of the Kurile Island Arc. Chemical Geology 66, 227–243.
  • Zou, H., Zindler, A., Xisheng, X. & Qi, Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in
  • SE China: mantle sources, regional variations and tectonic significance. Chemical Geology 171, 33–47.
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

On the surface circulation of the Marmara Sea as deduced from drifers

Şükrü Turan BEŞİKTEPE, Pietro ZANASCA, Riccardo GERIN, Pierre-Marie POULAIN

On the surface circulation of the Marmara Sea as deduced from drifters

Riccardo GERIN, Pierre-marie POULAIN, Şükrü Turan BEŞİKTEPE, Pietro ZANASCA

Circum-Tethyan carbonate platform evolution during the Palaeogene: the Prebetic platform as a test for climatically controlled facies shifts

Stefan HÖNTZSCH, Christian SCHEIBNER, Johannes P. BROCK, Jochen KUSS

Impact of Pb-Zn mining activity on surfcial sediments of Lake Kalimanci (FYR Macedonia)

Nastja Rogan SMUC, Tadej DOLENEC, Todor SERAFIMOVSKI, Matej DOLENEC, Petra VRHOVNIK

First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against postemplacement compositional changes and petrogenetic processes

Surendra P. VERMA, Sanjeet K. VERMA

Investigation of the groundwater effect on slow-motion landslides by using dynamic Kalman filtering method with GPS: Koyulhisar town center

Kemal Özgür HASTAOĞLU

Circum-Tethyan carbonate platform evolution during the Palaeogene: the Prebetic platform as a test for climatically controlled facies shifs

Stefan HÖNTZSCH, Christian SCHEIBNER, P. Johannes BROCK, Jochen KUSS

Computation of grade values of sediment-hosted barite deposits in northeastern Isparta (western Turkey)

Numan ELMAS, Uğur ŞAHİN

Investigation of the groundwater efect on slow-motion landslides by using dynamic Kalman fltering method with GPS: Koyulhisar town center

Kemal Özgür HASTAOĞLU

Impact of Pb-Zn mining activity on surficial sediments of Lake Kalimanci(FYR Macedonia)

Petra VRHOVNIK, Nastja Rogan SMUC, Tadej DOLENEC, Todor SERAFIMOVSKI, Matej DOLENEC