Circum-Tethyan carbonate platform evolution during the Palaeogene: the Prebetic platform as a test for climatically controlled facies shifts

The distribution of selected shallow-benthic biota at circum-Tethyan carbonate platforms demonstrates an excellent proxy for the impact of latitudinally controlled cooling and variations in the trophic resources during the Palaeogene. In this study, we link and compare the spatial distribution and abundance of larger benthic foraminifera and hermatypic corals of Tethyan carbonate successions with new records from the Prebetic platform in SE Spain. The succession of the Prebetic platform is dominated by larger benthic foraminifera and coralline red algae throughout the Eocene, whereas corals were not recorded until the Late Eocene. Similar biotic trends were reported from 10 selected circum-Tethyan carbonate platforms. High-resolution carbon isotopes indicate a decoupling from the global carbon cycle during the latest Eocene and Early Oligocene. Thus, a possible scenario is demonstrated by the increasing restriction of the Prebetic shelf due to the continuing convergence of the Betic domain towards Iberia during the Early Oligocene. Based on previous studies, we refined earlier established Palaeogene platform stages, which reflect the evolution of shallow-benthic communities during the transition from global greenhouse to icehouse conditions. Global cooling led to the recovery of coral communities in the northern Tethyan realm during the Bartonian (stage IV). A prominent cooling event at the Bartonian-Priabonian boundary, associated with the demise of many symbiont-bearing larger foraminifera, caused the proliferation of coral reefs in the northern Tethys and the recovery of corals in the southern Tethys (stage V). The massive temperature drop related to the Oi-1 glaciation represented the base of platform stage VI (Early Oligocene-?). After a transient platform crisis during the lowermost Oligocene, coral reefs spread throughout the Tethys and proliferated with newly emerged larger benthic foraminifera.

Circum-Tethyan carbonate platform evolution during the Palaeogene: the Prebetic platform as a test for climatically controlled facies shifts

The distribution of selected shallow-benthic biota at circum-Tethyan carbonate platforms demonstrates an excellent proxy for the impact of latitudinally controlled cooling and variations in the trophic resources during the Palaeogene. In this study, we link and compare the spatial distribution and abundance of larger benthic foraminifera and hermatypic corals of Tethyan carbonate successions with new records from the Prebetic platform in SE Spain. The succession of the Prebetic platform is dominated by larger benthic foraminifera and coralline red algae throughout the Eocene, whereas corals were not recorded until the Late Eocene. Similar biotic trends were reported from 10 selected circum-Tethyan carbonate platforms. High-resolution carbon isotopes indicate a decoupling from the global carbon cycle during the latest Eocene and Early Oligocene. Thus, a possible scenario is demonstrated by the increasing restriction of the Prebetic shelf due to the continuing convergence of the Betic domain towards Iberia during the Early Oligocene. Based on previous studies, we refined earlier established Palaeogene platform stages, which reflect the evolution of shallow-benthic communities during the transition from global greenhouse to icehouse conditions. Global cooling led to the recovery of coral communities in the northern Tethyan realm during the Bartonian (stage IV). A prominent cooling event at the Bartonian-Priabonian boundary, associated with the demise of many symbiont-bearing larger foraminifera, caused the proliferation of coral reefs in the northern Tethys and the recovery of corals in the southern Tethys (stage V). The massive temperature drop related to the Oi-1 glaciation represented the base of platform stage VI (Early Oligocene-?). After a transient platform crisis during the lowermost Oligocene, coral reefs spread throughout the Tethys and proliferated with newly emerged larger benthic foraminifera.

___

  • Abdulsamad, E.O. & Barbieri, R. 1999. Foraminiferal distribution and palaeoecological interpretation of the Eocene-Miocene carbonates at Al Jabal al Akhdar (northeast Libya). Journal of Micropalaeontology 18, 45–65.
  • Accordi, G., Carbone, F. & Pignatti, J.S. 1998. Depositional history of a Paleogene carbonate ramp (Western Cephalonia, Ionian Islands, Greece). Geologica Romana 34, 131–205.
  • Adatte, T., Bolle, M.-P., Kaenel, E.D., Gawenda, P., Winkler, W. & Salis, K.V. 2000. Climatic evolution from Palaeocene to earliest Eocene inferred from clay-minerals: a transect from northern Spain (Zumaya) to southern (Spain, Tunisia) and southeastern Tethys margins (Israel, Negev). In: Schmitz, B., Sundquist, B. & Andreasson, F.P. (eds), Early Paleogene Warm Climates and Biosphere Dynamics. Geological Society, Sweden, GFF, Uppsala, 7–8.
  • Angori, E., Bernaola, G. & Monechi, S. 2007. Calcareous nannofossil assemblages and their response to the Paleocene–Eocene thermal maximum event at different latitudes: ODP Site 690 and Tethyan sections. Geological Society of America Special Papers 424, 69–85.
  • Arthur, M.A., Schlanger, S.O. & Jenkyns, H.C. 1987. The CenomanianTuronian oceanic anoxic event, II. Palaeoceanographic controls on organic-matter production and preservation. Geological Society, London, Special Publications 26, 401–420.
  • Barattolo, F., Bassi, D. & Romano, R. 2007. Upper Eocene larger foraminiferal–coralline algal facies from the Klokova Mountain (southern continental Greece). Facies 53, 361–375.
  • Bassi, D. 1998. Coralline algal facies and their palaeoenvironments in the Late Eocene of Northern Italy (Calcare di Nago, Trento). Facies 39, 179–202.
  • Bassi, D. 2005. Larger foraminiferal and coralline algal facies in an Upper Eocene storm-influenced, shallow-water carbonate platform (Colli Berici, north-eastern Italy). Palaegeography, Palaeoclimatology, Palaeoecology 226, 17–35.
  • Beavington-Penney, S.J., Wright, V.P., & Racey, A. 2005. Sediment production and dispersal on foraminifera-dominated early Tertiary ramps: the Eocene El Garia Formation, Tunisia. Sedimentology 52, 537–569.
  • Beerling, D.J. 2000. Increased terrestrial carbon storage across the Palaeocene-Eocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 161, 395–405.
  • Benjamini, C. 1981. Limestone and chalk transitions in the Eocene of the Western Negev, Israel. In: Neale, J.W. & Brasier, M.D. (eds) Microfossils from Recent and Fossil Shelf Seas. British Micropalaeontological Society, 205–213.
  • Benjamini, C. & Zilberman, E. 1979. Late Eocene coral reefs of the western Negev, Israel. Israel Journal of Earth Sciences 28, 42–46. Bijl, P.K., Houben, A.J.P., Schouten, S., Bohaty, S.M., Sluis, A., Reichart, G.J., Damste, J.S.S. & Brinkhuis, H. 2010. Transient Middle Eocene atmospheric CO 2 and temperature variations. Science 330, 819–821.
  • Bismuth, H. & Bonnefous, J. 1981. The biostratigraphy of carbonate deposits of the middle and upper Eocene in northeastern off-shore Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology 36, 191–211.
  • Blankenship, C.L. 1992. Structure and palaeogeography of the external Betic Cordillera, southern Spain. Marine and Petroleum Geology 9, 257–264.
  • Bohaty, S.M. & Zachos, J.C. 2003. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017– 10
  • Bolle, M.P. & Adatte, T. 2001. Palaeocene-early Eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Minerals 36, 249–261.
  • Bosellini, F.R. & Pappazzoni, C.A. 2003. Palaeoecological significance of coral-encrusting foraminiferan associations: a case-study from the Upper Eocene of northern Italy. Acta Palaeontologica Polonica 48, 279–292.
  • Everts, A.J.W. 1991. Interpreting compositional variations of calciturbidites in relation to platform-stratigraphy: an example from the Paleogene of SE Spain. Sedimentary Geology 71, 231– 2
  • Flügel, E. 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, Berlin.
  • Fontboté, J. & Vera, J. 1983. Introduccion de la Cordillera Betica. In: Comba, J. (ed), Geologia de España Vol. 2. Instituto Geológico y Minero de España, Madrid, 205–218.
  • Galdeano, C.S.D. 2000. Evolution of Iberia during the Cenozoic with special emphasis on the formation of the Betic Cordillera and its relation with the western Mediterranean. Ciencias da Terra 14, 9–24.
  • Garcia-Hernandez, M., Lopez-Garrido, A.C., Rivas, P., Sanz de Galdeano, C. & Vera, I.A. 1980. Mesozoic palaeogeographic evolution of the external zones of the Betic Cordillera. Geologie en Mijnbouw 59, 155–168.
  • Gawenda, P., Winkler, W., Schmitz, B. & Adatte, T. 1999. Climate and bioproductivity control on carbonate turbidite sedimentation (Paleocene to earliest Eocene, Gulf of Biscay, Zumaia, Spain). Journal of Sedimentary Research 69, 1253–1261.
  • Geel, T. 1996. Paleogene to Early Miocene sedimentary history of the Sierra Espuna (Malaguide complex, internal zone of the Betic Cordilleras, SE Spain), evidence for extra-Malaguide (Sardinian?) provenance of Oligocene conglomerates: paleogeographic implications. Estudios Geologicos, 52, 211–230. Geel, T. 2000. Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 155, 211–238.
  • Geel, T., Roep, T.B. & Van Hinte, J.E. 1998. Eocene tectonosedimentary patterns in the Alicante Region (southeastern Spain). In: De Graciansky, P.C., Hardenbol, J., Jaquin, T. & Vail, P.R. (eds), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publication 60, 289–302.
  • Gibbs, S.J., Bralower, T.J., Bown, P.R., Zachos, J.C. & Bybell, L.M. 2006. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene–Eocene thermal maximum: implications for global productivity gradients. Geology 34, 233–236.
  • Hallock, P. 2005. Global change and modern coral reefs: new opportunities to understand shallow-water carbonate depositional processes. Sedimentary Geology 175, 19–33.
  • Hallock, P., Premoli Silva, I. & Boersma, A. 1991. Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeography, Palaeoclimatology, Palaeoecology 83, 49–64.
  • Hallock, P. & Schlager, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1, 389–398.
  • Harzhauser, M. 2004. Oligocene gastropod faunas of the Eastern Mediterranean (Mesohellenic Trough/Greece and Esfahan– Sirjan Basin/Central Iran). Courier Forschungsinstitut Senckenberg 248, 93–181.
  • Kiessling, W. 2002. Secular variations in the Phanerozoic reef ecosystem. In: Kiessling, W., Flügel, E. & Golonka, J. (eds), Phanerozoic Reef Patterns. SEPM Special Publication 72, 625– 6
  • Krasheninnikov, V.A. 2005. Part II – Syria – Paleogene. In: Krasheninnikov, V.A., Hall, J.K., Hirsch, F., Benjamini, C. & Flexer, A. (eds), Geological Framework of the Levant. Volume I: Cyprus and Syria. Historical Productions-Hall, Jerusalem, 299–342.
  • Leinfelder, R.R. 1997. Coral reefs and carbonate platforms within a siliciclastic setting: general aspects and examples from the Late Jurassic of Portugal. Proceedings of the 8th International Coral Reef Symposium 2, 1737–1742.
  • Less, G., Özcan, E., Papazzoni, C.A. & Stockar, R. 2008. The middle to late Eocene evolution of nummulitid foraminifer Heterostegina in the Western Tethys. Acta Palaeontologica Polonica 53. 317–350.
  • Less, G., Özcan, E., & Okay, A.I. 2011. Stratigraphy and larger foraminifera of the Middle Eocene to Lower Oligocene shallow-marine units in the northern and eastern parts of the Thrace Basin, NW Turkey. Turkish Journal of Earth Sciences 20, 793–845.
  • Less, G., & Özcan, E. 2012. Bartonian–Priabonian larger benthic foraminiferal events in the western Tethys. Austrian Journal of Earth Sciences 105, 129–140.
  • Lopez-Martinez, N. 1989. Tendencias en plaeobiogeografia el futuro de la biogeografia del pasado In: Aguirre, E. (ed), Paleontologia, CSIC, Madrid, 271–299.
  • Louks, R.G., Moody, R.T.J., Bellis, J.K. & Brown, A.A. 1998. Regional depositional setting and pore network systems of the El Garia Formation (Metlaoui Group, Lower Eocene), offshore Tunisia. In: MacGregor, D.S., Moody, R.T.J. & Clark-Lowes, D.D. (eds), Petroleum Geology of North Africa. Geological Society, London, Special Publication 132, 355–374.
  • Lourens, L.J., Sluijs, A., Kroon, D., Zachos, J.C., Thomas, E., Röhl, U., Bowles, J. & Raffi, I. 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083–1087.
  • Lowenstam, H.A. & Weiner, S. 1989. On Biomineralization. Oxford University Press, New York.
  • Martin-Chivelet, J. & Chacon, B. 2007. Event stratigraphy of the upper Cretaceous to lower Eocene hemipelagic sequences of the Prebetic Zone (SE Spain): record of the onset of tectonic convergence in a passive continental margin. Sedimentary Geology 197, 141–163.
  • Martinez del Omo, W. 2003. La Plataforma Cretácica del Prebético y su falta de continuidad por el Margen Sudibérico. Cuadernos de Geología Ibérica, Volumen especial, Nuevas perspectivas sobre el Cretácico de España 29, 111–133.
  • McGowran, B. 2009. The Australo-Antarctic Gulf and the Auversian facies shift. Geological Society of America Special Papers 452, 215–240.
  • Özcan, E., Less, G., Báldi-Beke, M., & Kollányi, K. 2010a. Oligocene hyaline larger foraminifera from Keleresdere Section (Mus, Eastern Turkey). Micropaleontology. 56, 465–493.
  • Payros, A., Pujalte, V., Tosquella, J. & Orue-Etxebarria, X. 2010. The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa–Andia Formation): An analogue of future shallow-marine carbonate systems? Sedimentary Geology 228, 184–204.
  • Pearson, P.N., Van Dongen, B.E., Nicholas, C.J., Pancost, R.D., Schouten, S., Singano, J.M. & Wade, B.S. 2007. Stable warm tropical climate through the Eocene Epoch. Geology 35, 211– 2
  • Perrin, C. 1992. Signification Écologique des foraminifères acervulinidés et leur role dans la formation de faciès récifaux et organogènes depuis le Paléocène. Geobios 25, 725–751.
  • Perrin, C. 2002. Tertiary: The emergence of modern reef ecosystems. In: Kiessling, W., Flügel, E. & Golonka, J. (eds), Phanerozoic Reef Patterns, SEPM Special Publication 72, 587–621.
  • Perrin, C. & Kiessling, W. 2010. Latitudinal trends in Cenozoic reef patterns and their relationship to climate. In: Mutti, M., Piller, W. & Betzler, C. (eds), Carbonate systems during the Oligocene– Miocene climatic transition. Wiley-Blackwell, 17–33.
  • Plaziat, J.C. & Perrin, C. 1992. Multikilometer-sized reefs built by foraminifera (Solenomeris) from the early Eocene of the Pyrenean domain (S. France, N. Spain): palaeoecologic relations with coral reefs. Palaeogeography, Palaeoclimatology, Palaeoecology 96, 195–231.
  • Postigo Mijarra, J.M., Barrón, E., Gómez Manzaneque, F. & Morla, C. 200 Floristic changes in the Iberian Peninsula and Balearic Islands (south-west Europe) during the Cenozoic. Journal of Biogeography 36, 2025–2043.
  • Prothero, D.R. 2003. Chronostratigraphy of the Pacific Coast marine Eocene-Oligocene transition. In: Prothero, D.R., Ivany, L.C. & Nesbitt, E.A. (eds), From Greenhouse to Icehouse: The Marine Eocene–Oligocene Transition. Columbia University Press, New York, 1–12.
  • Rasser, M. 1994. Facies and palaeoecology of rhodoliths and acervulinid macroids in the Eocene of the Krappfeld (Austria). Beiträge zur Paläontologie 19, 191–217.
  • Rasser, M.W. & Piller, W.E. 2004. Crustose algal frameworks from the Eocene Alpine Foreland. Palaeogeography, Palaeoclimatology, Palaeoecology 206, 21–39.
  • Ryan, K.E., Walsh, J.P., Corbett, D.R. & Winter, A. 2008. A record of recent change in terrestrial sedimentation in a coral-reef environment, La Parguera, Puerto Rico: a response to coastal development? Marine Pollution Bulletin 56, 1177–1183.
  • Salaj, J.B. & Van Houten, F. 1988. Cenozoic palaeogeographic development of northern Tunisia, with special reference to the stratigraphic record in the Miocene trough. Palaeogeography, Palaeoclimatology, Palaeoecology 64, 43–57.
  • Scheibner, C., Speijer, R.P. & Marzouk, A.M. 2005. Larger foraminiferal turnover during the Paleocene/Eocene thermal maximum and paleoclimatic control on the evolution of platform ecosystems. Geology 33, 493–496.
  • Thomas, E. & Zachos, J.C. 2000. Was the late Paleocene thermal maximum a unique event? GFF 122, 169–170.
  • Thomas, M.F.H., Bodin, S., Redfern, J. & Irving, D.H.B. 2010. A constrained African craton source for the Cenozoic Numidian Flysch: implications for the palaeogeography of the western Mediterranean basin. Earth-Science Reviews 101, 1–23.
  • Tlig, S., Sahli, S., Er-Raioui, L., Alouani, R. & Mzoughi, M. 2010. Depositional environment controls on petroleum potential of the Eocene in the north of Tunisia. Journal of Petroleum Science and Engineering 71, 91–105.
  • Van de Poel, H.M. & Schlager, W. 1994. Variations in Mesozoic– Cenozoic skeletal mineralogy. Geologie & Mijnbouw 74, 31–51. Vecsei, A. 2003. Nutrient control of the global occurrence of isolated carbonate banks. International Journal of Earth Sciences 92, 476–481.
  • Vecsei, A. & Moussavian, E. 1997. Paleocene reefs on the Maiella platform margin, Italy: an example of the effects of the Cretaceous/Tertiary boundary events on reefs and carbonate platforms. Facies 36, 123–140.
  • Vecsei, A. & Sanders, D.G.K. 1997. Sea-level highstand and lowstand shedding related to shelf margin aggradation and emersion, Upper Eocene–Oligocene of Maiella carbonate platform, Italy. Sedimentary Geology 112, 219–234.
  • Vergés, J., Fernàndez, M. & Martìnez, A. 2002. The Pyrenean orogen: pre-, syn-, and post-collisional evolution. In: Rosenbaum, G. & Lister, G. (eds), Reconstruction of the Evolution of the AlpineHimalayan Orogen. Journal of the Virtual Explorer 8, 55–74.
  • Voigt, S. & Hilbrecht, H. 1997. Late Cretaceous carbon isotope stratigraphy in Europe: correlation and relations with sea level and sediment stability. Palaeogeography, Palaeoclimatology, Palaeoecology 134, 39–59.
  • Watts, A.B., Piatt, J.P. & Buhl, P. 1993. Tectonic evolution of the Alboran Sea basin. Basin Research 5, 153–177.
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Occurrences of rock-fulgurites associated with steel pylons of the overhead electric transmission line at Tor Zawar, Ziarat District and Jang Tor Ghar, Muslim Bagh, Pakistan

Akhtar Muhammad KASSI, Aimal Khan KASI, Henrik FRIIS, Din Muhammad KAKAR

On the surface circulation of the Marmara Sea as deduced from drifers

Şükrü Turan BEŞİKTEPE, Pietro ZANASCA, Riccardo GERIN, Pierre-Marie POULAIN

Circum-Tethyan carbonate platform evolution during the Palaeogene: the Prebetic platform as a test for climatically controlled facies shifts

Stefan HÖNTZSCH, Christian SCHEIBNER, Johannes P. BROCK, Jochen KUSS

Circum-Tethyan carbonate platform evolution during the Palaeogene: the Prebetic platform as a test for climatically controlled facies shifs

Stefan HÖNTZSCH, Christian SCHEIBNER, P. Johannes BROCK, Jochen KUSS

Investigation of the groundwater effect on slow-motion landslides by using dynamic Kalman filtering method with GPS: Koyulhisar town center

Kemal Özgür HASTAOĞLU

Impact of Pb-Zn mining activity on surficial sediments of Lake Kalimanci(FYR Macedonia)

Petra VRHOVNIK, Nastja Rogan SMUC, Tadej DOLENEC, Todor SERAFIMOVSKI, Matej DOLENEC

On the surface circulation of the Marmara Sea as deduced from drifters

Riccardo GERIN, Pierre-marie POULAIN, Şükrü Turan BEŞİKTEPE, Pietro ZANASCA

Impact of Pb-Zn mining activity on surfcial sediments of Lake Kalimanci (FYR Macedonia)

Nastja Rogan SMUC, Tadej DOLENEC, Todor SERAFIMOVSKI, Matej DOLENEC, Petra VRHOVNIK

Investigation of the groundwater efect on slow-motion landslides by using dynamic Kalman fltering method with GPS: Koyulhisar town center

Kemal Özgür HASTAOĞLU

First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against postemplacement compositional changes and petrogenetic processes

Surendra P. VERMA, Sanjeet K. VERMA