Umpolung strategy: advances in catalytic C-C bond formations

This mini-review examines the recent advances in umpolung strategy, devised originally by Corey and Seebach. Although numerous stoichiometric variants have been published to date, this article covers just the catalytic C-C bond forming reactions due to their major benefits such as atom economy, less pollution, and workable simplicity. In the context of umpolung, the studies are evaluated under 3 main titles: enzyme, N-heterocyclic carbene, and cyanide ion catalyzed reactions. In particular, enzyme and NHC catalyzed reactions mainly involve asymmetric applications.

Umpolung strategy: advances in catalytic C-C bond formations

This mini-review examines the recent advances in umpolung strategy, devised originally by Corey and Seebach. Although numerous stoichiometric variants have been published to date, this article covers just the catalytic C-C bond forming reactions due to their major benefits such as atom economy, less pollution, and workable simplicity. In the context of umpolung, the studies are evaluated under 3 main titles: enzyme, N-heterocyclic carbene, and cyanide ion catalyzed reactions. In particular, enzyme and NHC catalyzed reactions mainly involve asymmetric applications.

___

  • Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis; Pergamon Press: Oxford, 1991.
  • Corey, E. J.; Cheng, X. M. The Logic of Chemical Synthesis; John Wiley and Sons, Inc.: New York, 1995.
  • Trost, B. M. Angew. Chem. Int. Ed. 1995, 34, 259–281.
  • IUPAC Comp. Chem. Term. (2nd Edition) 1994, 99, 1174.
  • Seebach, D.; Corey E. J. J. Org. Chem. 1975, 40, 231–237.
  • W¨ ohler, F.; Liebig, J. Ann. Pharm. 1832, 3, 249–282.
  • Lapworth, A. J. Chem. Soc. 1903, 83, 995–1005.
  • (a) Yu, H.-Z.; Fu, Y.; Liu, L.; Guo, Q.-X. Chin. J. Org. Chem. 2007, 72, 8025–8032. (b) Enders, D.; Shil-Vock, J. P. Chem. Soc. Rev. 2000, 29, 359–373. (c) Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534–541.
  • (a) Seebach, D. Synthesis 1969, 1, 17–36. (b) Albright, J. D. Tetrahedron 1983, 39, 3207–3233. (c) Ferrino, S. A.; Maldonado, L. A. Synth. Commun. 1980, 10, 717–723. (d) Hanzawa, Y.; Tabuchi, N.; Taguchi, T. Tetrahedron Lett. 1998, 39, 8141–8144. (e) Hanzawa, Yuji; Tabuchi, N.; Saito, K.; Noguchi, S.; Taguchi, T. Angew. Chem. Int. Ed. 1999, 38, 2395–2398. (f) Reutrakul, V.; Ratananukul, P.; Nimgirawath, S. Chem. Lett. 1980, 9, 71–72. (g) Enders, D.; Lotter, H.; Maigrot, N.; Mazaleyrat, J. P.; Welvart, Z. Nouv. J. Chim. 1984, 8, 747–750.
  • (a) Seoane, G. Curr. Org. Chem. 2000, 4, 283–304. (b) Faber, K. Biotransformations in Organic Chemistry ; Springer-Verlag, Berlin, 5th Edn. 2004. (c) Pohl, M.; Sprenger, G. A.; M¨ uller, M. Curr. Opin. Biotechnol. 2004, 15, 335–342. (d) Sukuraman, J.; Hanefeld, U. Chem. Soc. Rev. 2005, 34, 530–542.
  • Ukai, T.; Tanaka, R.; Dokawa, T. J. Pharm. Soc. Jpn. 1943, 63, 296–300.
  • Mizuhara, S.; Handler, P. J. Am. Chem. Soc. 1954, 76, 571–573.
  • Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719–3726.
  • (a) Chipman, D. M.; Duggleby, R. G.; Tittmann, K. Curr. Opin. Chem. Biol. 2005, 9, 475–481. (b) McCourt, J. A.; Duggleby, R. G. Trends Biochem. Sci. 2005, 30, 222–225.
  • Duggleby, R. G.; Pang, S. S. J. Biochem. Mol. Biol. 2000, 33, 1–33.
  • (a) Wilcocks, R.; Ward, O. P. Biotechnol. Bioeng. 1992, 39, 1058–1063. (b) Wilcoks, R.; Ward, O. P.; Collins, S.; Dewney, N. J.; Hong, Y.; Prosen, E. Appl. Environ. Microbiol. 1992, 58, 1699–1704. (c) Prosen, E.; Ward, O. P. J. Ind. Microbiol. 1994, 13, 287–291.
  • Wilcocks, R.; Ward, O. P.; Collins, S.; Dewdney, N. J.; Hong, Y.; Prosen, E. Biochemistry 1992, 27, 2197–2205. Demir, A. S.; D¨ unnwald, T.; ˙Iding, H.; Pohl, M.; Muller, M. Tetrahedron: Asymmetry 1999, 10, 4769–4774.
  • De Maria, P. D.; Pohl, M.; Gocke, D.; Gr¨ oger, H.; Trautwein, H.; Stillger, T.; Walter, L.; M¨ uller, M. Eur. J. Org. Chem. 2007, 2940–2944.
  • Gonzalez, B.; Vicuna, R. J. Bacteriol. 1989, 171, 2401–2405.
  • Demir, A. S.; Pohl, M.; Janzen, E.; M¨ uller, M. J. Chem. Soc., Perkin Trans. 1 2001, 633–635.
  • Dunkelmann, P.; Kolter-Jung, D.; Nitsche, A.; Demir, A. S.; Siegert, P.; Lignen, B.; Baumann, M.; Pohl, M.; M¨ uller, M. J. Am. Chem. Soc. 2002, 124, 12084–12085.
  • (a) Demir, A. S.; Sesenoglu, O.; Dunkelmann, P.; Muller, M.; Org. Lett. 2003, 5, 2047–2050. (b) Ayhan, P.; S ¸im¸sek, I.; Cif¸ ci B.; Demir, A. S. Org. Biomol. Chem. 2011, 9, 2602–2605.
  • Neuberg, C.; Hirsch, J. Biochem. Zeitschr. 1921, 115, 282–310. Sch¨ orken, U.; Sprenger, G. A. Biochim. Biophys. Acta – Protein Struct. Mol. Enzym. 1998, 1385, 229–243. For comprehensive reviews on NHC catalysis, see: (a) Dr¨ oge, T.; Glorius, F. Angew. Chem. Int. Ed. 2010, 49, 6940–6952. (b) Phillips, E. M.; Chan, A.; Scheidt, K. A. Aldrichimica Acta 2009, 42, 55–66.
  • Sheehan, J.; Hunneman, D. H. J. Am. Chem. Soc. 1966, 88, 3666–3667.
  • Sheehan, J.; Hara, T. J. Org. Chem. 1974, 39, 1196–1199.
  • (a) Tagaki, W.; Tamura, Y.; Yano, Y. Bull. Chem. Soc. Jpn. 1980, 53, 478–480. (b) Mart´ı, J.; Castells, J.; L´ opez Calahorra, F. Tetrahedron Lett. 1993, 34, 521–524.
  • Enders, D.; Kallfass, U. Angew. Chem., Int. Ed. 2002, 41, 1743–1745.
  • (a) Baragwanath, L.; Rose, C. A.; Zeitler, K.; Connon, S. J. J. Org. Chem. 2009, 74, 9214–9217. (b) Enders, D.; Breuer, K.; Teles, J. H. Helv. Chim. Acta 1996, 79, 1899–1902. (c) Knight, R. L.; Leeper, F. J. J. Chem. Soc., Perkin Trans. 1 1998, 1891–1894.
  • Hachisu, Y.; Bode, J. W.; Suzuki, K. J. Am. Chem. Soc. 2003, 125, 8432–8433.
  • (a) Enders, D.; Niemeier, O.; Balensiefer, T. Angew. Chem., Int. Ed. 2006, 45, 1463–1467. (b) Takikawa, H.; Hachisu, H.; Bode, J. W.; Suzuki, K. Angew. Chem., Int. Ed. 2006, 45, 3492–3494.
  • (a) Kuhl, N.; Glorius, F. Chem. Commun. 2011, 47, 573–575. (b) Rose, C. A.; Gundala, S.; Fagan, C. L.; Franz, J. F.; Connon, S. J.; Zeitler, K. Chem. Sci. 2012, 3, 735–740. (c) Enders, D.; Henseler, A. Adv. Synth. Catal. 2009, 351, 1749–1752. (d) Enders, D.; Grossmann, A.; Fronert, J.; Raabe, G. Chem. Commun. 2010, 46, 6282–6284.
  • Enders, D. Stereoselective Synthesis (Eds.: E. Ottow, K. Sch¨ ollkopf, B.-G. Schulz), Springer: Berlin, 1994, p. 63. (a) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298–10299. (b) Kerr, M. S.; Rovis, T. Synlett 2003, 1934–1936.
  • (a) Liu, Q.; Perreault, S.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14066–14067. (b) Liu, Q.; Rovis, T. Org. Lett. 2009, 11, 2856–2859. (c) DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis, T. J J. Am. Chem. Soc 2009, 131, 10872–10874. (d) Um, J. M.; DiRocco, D. A.; Noey, E. L.; Rovis, T.; Houk, K. N. J. Am. Chem. Soc. 2011, 133, 11249–11254. (e) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2011, 133, 10402–10405.
  • (a) Mattson, A. E.; Bharadwaj, A. R.; Scheidt, K. A. J. Am. Chem. Soc. 2004, 126, 2314–2315. (b) Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465–2468. (c) Mattson, A. E.; Bharadwaj, A. R.; Zuhl, A. M.; Scheidt, K. A. J. Org. Chem. 2006, 71, 5715–5724.
  • (a) Hirano, K.; Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 14190–14191 (b) Piel, I.; Steinmetz, M.; Hirano, K.; Fr¨ ohlich, R.; Grimme, S.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 4983–4987.
  • Biju, A. T.; Wurz, N. E.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 5970–5971.
  • (a) Bugaut, X.; Liu, F.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 8130–8133. (b) Liu, F.; Bugaut, X.; Schedler, M.; Fr¨ ohlich, R.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 12626–12630.
  • Biju A. T.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 9761–9764.
  • Jousseaume, T.; Wurz, N. E.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1410–1414.
  • (a) Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J. J. Am. Chem. Soc. 2001, 123, 9696–9697. (b) Frantz, D. E.; Morency, L.; Soheili, A.; Murry, J. A.; Grabowski, E. J. J.; Tillyer, R. D. Org. Lett. 2004, 6, 843–846.
  • Mattson, A. E.; Scheidt, K. A. Org. Lett. 2004, 6, 4363–4366.
  • Mennen, S. M.; Gipson, J. D.; Kim, Y. R.; Miller, S. J. J. Am. Chem. Soc. 2005, 127, 1654–1655.
  • DiRocco, D. A.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 5904–5906.
  • Vedachalam, S.; Zeng, J.; Gorityala, B. K.; Antonio, M.; Liu, X.-W. Org. Lett. 2010, 12, 352–355.
  • Lin, L.; Li, Y.; Du, W.; Deng, W. P. Tetrahedron Lett. 2010, 51, 3571–3574. Padmanaban, M.; Biju, A. T.; Glorius, F. Org. Lett. 2011, 13, 98–101. (a) Linghu, X.; Johnson, J. S. Angew. Chem. Int. Ed. 2003, 42, 2534–2536. (b) Linghu, X.; Potnick, J. R.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 3070–3071.
  • Bausch, C. C.; Johnson, J. S. J. Org. Chem. 2004, 69, 4283–4285.
  • Patrocinio, A. F.; Moran, P. J. S. J. Organomet. Chem. 2000, 603, 220–224.
  • Demir, A. S.; Reis, ¨ O.; Igdir, A. C.; Esiring¨ u, ˙I.; Eymur, S. J. Org. Chem. 2005, 70, 10584–105872.
  • Demir, A. S.; Esiring¨ u, I.; G¨ oll¨ u. M.; Reis, O. J. Org. Chem. 2009, 74, 2197–2199.
  • Tarr, J. C.; Johnson, J. S. Org. Lett. 2009, 11, 3870–3872.
  • Demir, A. S.; Reis, ¨ O.; Esiring¨ u, ˙I.; Reis, B.; Bari¸s, S. Tetrahedron 2007, 63, 160–165.
  • Demir, A. S.; Reis, B.; Reis, ¨ O.; Eymur, S.; G¨ oll¨ u, M.; Tural, S.; Saglam, G. J. Org. Chem. 2007, 72, 7439–7442. Demir, A. S.; Aybey, A.; Emrullahoglu, M. Synthesis 2009, 10, 1655–1658.
  • (a) Dakin, H. D.; Harington, C. R. J. Biol. Chem. 1923, 55, 487–494. (b) Trisler, J. C.; Frye, J. L. J. Org. Chem. 1965, 30, 306–307. (c) Kuebrich, J. P.; Schowen, R. L. J. Am. Chem. Soc. 1971, 93, 1220–1223.
  • Kwart, H.; Baevsky, M. J. Am. Chem. Soc. 1958, 80, 580–588.
  • Demir, A. S.; Reis, O. Tetrahedron 2004, 60, 3803–3811.