TD-DFT calculations and MCD spectroscopy of porphyrin and phthalocyanine analogues: rational design of photosensitizers for PDT and NIR region sensor applications

Geometry optimizations and TD-DFT calculations have been carried out on series of fused-ring-expanded phthalonitriles, phthalocyanines, and aza-dipyrromethene boron difluoride (aza-BODIPY) dyes and trends in their optical and redox properties have been analyzed. The potential utility of fused-ring-expanded phthalocyanine and aza-BODIPY analogues for photodynamic therapy and near infrared region sensor applications is assessed on this basis. Recent attempts to prepare fused-ring-expanded aza-BODIPY analogues with benzene, pyrazine, and naphthalene rings have demonstrated that the properties of aza-BODIPYs vary markedly when different fused ring systems are added to the b-carbons of the pyrrole rings. A comparison of the TD-DFT calculations demonstrates that, as has previously been postulated, trends in the optical spectra, redox properties, and electronic structures of aza-BODIPYs follow those observed for the phthalonitrile precursors and the analogous phthalocyanines despite the absence of a fully conjugated macrocyclic perimeter that obeys Hückel's rule.

TD-DFT calculations and MCD spectroscopy of porphyrin and phthalocyanine analogues: rational design of photosensitizers for PDT and NIR region sensor applications

Geometry optimizations and TD-DFT calculations have been carried out on series of fused-ring-expanded phthalonitriles, phthalocyanines, and aza-dipyrromethene boron difluoride (aza-BODIPY) dyes and trends in their optical and redox properties have been analyzed. The potential utility of fused-ring-expanded phthalocyanine and aza-BODIPY analogues for photodynamic therapy and near infrared region sensor applications is assessed on this basis. Recent attempts to prepare fused-ring-expanded aza-BODIPY analogues with benzene, pyrazine, and naphthalene rings have demonstrated that the properties of aza-BODIPYs vary markedly when different fused ring systems are added to the b-carbons of the pyrrole rings. A comparison of the TD-DFT calculations demonstrates that, as has previously been postulated, trends in the optical spectra, redox properties, and electronic structures of aza-BODIPYs follow those observed for the phthalonitrile precursors and the analogous phthalocyanines despite the absence of a fully conjugated macrocyclic perimeter that obeys Hückel's rule.

___

  • Bandichhor, R.; Petrescu, A. D.; Vespa, A.; Kier, A. B.; Schroeder, F.; Burgess, K. J. Am. Chem. Soc. 2006, 128, 10688–10689.
  • Du, P. W.; Lippard, S. J. Inorg. Chem. 2010, 49, 10753–10755.
  • Ali, H.; van Lier, J. E. In Handbook of Porphyrin Science, Vol. 4; Kadish, K. M.; Smith, K. M.; Guilard, R. Eds. World Scientific: Singapore, 2010, pp. 1–119.
  • Nyokong, T.; Ahsen, V. Eds. Photochemical and Photophysical Characterization, in Photosensitizers in Medicine, Environment, and Security; Springer: New York, NY, USA, 2012.
  • Kobayashi, N.; Nakajima, S.; Osa, T. Inorg. Chim. Acta 1993, 210, 131–133.
  • Kobayashi N.; Nakajima, S.; Ogata, H.; Fukuda, T. Chem. Eur. J. 2004, 10, 6294–6312.
  • Gorman, A.; Killoran, J.; O’Shea, C.; Kenna, T.; Gallagher, W. M.; O’Shea, D. F. J. Am. Chem. Soc. 2004, 126, 10619–10631.
  • McDonnell, S. O.; Hall, M. J.; Allen, L. T.; Byrne, A.; Gallagher, W. M.; O’Shea, D. F. J. Am. Chem. Soc. 2005, 127, 16360–16361.
  • Yogo, T.; Urano, Y.; Ishitsuka, Y.; Maniwa, F.; Nagano, T. J. Am. Chem. Soc. 2005, 127, 12162–12163.
  • Yang, Y.; Guo, Q.; Chen, H.; Zhou, Z.; Guo, Z.; Shen, Z. Chem. Commun. 2013, 49, 3940–3942.
  • Lu, H.; Mack, J.; Yang, Y.; Shen, Z. Chem. Soc. Rev. 2014, 43, 4778–4823.
  • Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891–4932.
  • Lu, H.; Shimizu, S.; Mack, J.; You, X. Z.; Shen, Z.; Kobayashi, N. Chem. Asian J. 2011, 6, 1026–1037.
  • Liu, H.; Mack, J.; Guo, Q.; Kobayashi, N.; Shen, Z. Chem. Commun. 2011, 47, 12092–12094.
  • Mack, J.; Asano, Y.; Kobayashi, N. Stillman, M. J. J. Am. Chem. Soc. 2005, 127, 17697–17711.
  • Michl, J. J. Am. Chem. Soc. 1978, 100, 6801–6811.
  • Michl, J. J. Am. Chem. Soc. 1978, 100, 6812–6818.
  • Michl, J. Pure Appl. Chem. 1980, 52, 1549–1563.
  • Michl, J. Tetrahedron 1984, 40, 3845–3934.
  • Magyar, R. J.; Tretiak, S. J. J. Chem. Theory Comput. 2007, 3, 976–987.
  • Cai, Z. L.; Crossley, M. J.; Reimers, J. R.; Kobayashi, R; Amos, R. D. J. Phys. Chem. B 2006, 110, 15624–15632.
  • Nemykin, V. N.; Hadt, R. G.; Belusludov, R. V.; Mizuseki, H.; Kawazoe Y. J. Phys. Chem. A 2007, 111, 12901– 129
  • Gouterman, M. In The Porphyrins, Vol. 3, Part A; Dolphin, D. Ed. Academic Press: New York, NY, USA, 1978, pp. 1–165.
  • Lash, T. D. J. Porphyrins Phthalocyanines 2001, 5, 267–288.
  • Xu, H. J.; Mack, J.; Descalzo, A. B.; Shen, Z.; Kobayashi, N.; You, X. Z.; Rurack, K. Chem. Eur. J. 2011, 17, 8965–8983.
  • Xu, H. J.; Mack, J.; Wu, D.; Xue, Z. L.; Descalzo, A. B.; Rurack, K.; Kobayashi, N.; Shen, Z. Chem. Eur. J. 2012, 18, 16844–16867.
  • Blackburn, E. V.; Timmons, C. J. J. Chem. Soc. C 1970, 175–178.
  • Cammidge, A. N.; Gopee, H. Chem. Eur. J. 2006, 12, 8609–8613.
  • Cammidge, A. N.; Gopee, H. Chem. Commun. 2002, 966–967.
  • Galpern, M. G.; Luk’yanets, E. A. Zh. Obshch. Khim. 1969, 39, 2536–2541.
  • Galpern, M. G.; Luk’yanets, E. A. Zh. Obsch. Khim. 1971, 41, 2549–2552.
  • Kudrevich, S.V.; van Lier, J. E.; Galpern, M. G.; Luk’yanets, E. A. Can. J. Chem. 1996, 74, 508–515.
  • Kudrevich, S.V.; van Lier, J. E. Can. J. Chem. 1996, 74, 1718–1723.
  • Kopecky, K.; Novakova, V.; Miletin, M.; Kuˇcera, R.; Zimcik, P. Bioconjugate Chem. 2010, 21, 1872–1879.
  • Kopecky, K.; Novakova, V.; Miletin, M.; Kuˇcera, R.; Zimcik, P. Tetrahedron 2011, 67, 5956–5963.
  • Zimcik, P.; Novakova, V.; Kopecky, K.; Miletin, M.; Zeynep, R.; Kobak, U. Inorg. Chem. 2012, 51, 4215–4223.
  • Novakova, V.; Miletin, M.; Filandrov´a, T.; Lencˇo, J.; Ruˇziˇcka, A.; Zimcik, P. J. Org. Chem. 2014, 79, 2082–2093. ◦
  • Faust, R.; Weber, C. J. Org. Chem. 1999, 64, 2571–2573.
  • L¨oser, P.; Winzenburg, A.; Faust, R. Chem. Commun. 2013, 49, 9413–9415.
  • Engelhardt, V.; Kuhri, S.; Fleischhauer, J.; Garc´ıa-Iglesias, M.; Gonz´alez-Rodr´ıguez, D.; Bottari, G.; Torres, T.; Guldi, D. M.; Faust, R. Chem. Sci. 2013, 4, 3888–3893.
  • Rusanova, J.; Pilkington, M.; S. Decurtins, S. Chem. Commun. 2002, 2236–2237.
  • Rio, Y.; Seitz, W.; Gouloumis, A.; V´azquez, P.; Sessler, J. L.; Guldi, D. M.; Torres, T. Chem. Eur. J. 2010, 16, 1929–1940.
  • G¨ol, C.; Malko¸c, M.; Ye¸silot, S.; Durmu¸s, M. Dalton Trans. 2014, 43, 7561–7569.
  • G¨ol, C.; Malko¸c, M.; Ye¸silot, S.; Durmu¸s, M. Dyes Pigments 2014, 111, 81–90.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009.
  • Eisner, U.; Linstead, R. P. J. Chem. Soc. 1955, 3749–3754.
  • Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138–163.
  • Kopranenkov, V. N.; Daskevich, S. N.; Luk’yanets, E. A. Zh. Obsch. Khim. 1979, 49, 1408–1412.
  • Yamada, H.; Kuzuhara, D.; Takahashi, T.; Shirnizu, Y.; Uota, K.; Okujima, T.; Uno, H.; Ono, N. Org. Lett. 2008, 10, 2947–2950.
  • Novak, B. H.; Lash, T. D. J. Org. Chem. 1998, 63, 3998–4010.
  • Linstead, R. P.; Whalley, M. J. Chem. Soc. 1952, 4839–4846.
  • Whalley, M. J. Chem. Soc. 1961, 866–869.
  • Kobayashi, N.; Mack, J.; Ishii, K.; Stillman, M. J. Inorg. Chem. 2002, 41, 5350–5363.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Electrochemistry of Fe(IV) and Mn(IV) corroles containing meso-dichlorophenyl substituents and the use of these compounds as catalysts for the electroreduction of dioxygen in acid media

Lina YE, Zhongping OU, Deying MENG, Mingzhu YUAN, Yuanyuan FANG, Karl M. KADISH

TD-DFT calculations and MCD spectroscopy of porphyrin and phthalocyanine analogues: rational design of photosensitizers for PDT and NIR region sensor applications

John MACK, Martijn WILDERVANCK, Tebello NYOKONG

Novel metal-free and metallophthalocyanines containing four 21-membered pentathiadiaza macrocycles: synthesis, characterization, and study of aggregation properties

Halil Zeki GÖK, Berna FARSAK, Hülya KELEŞ, Mustafa KELEŞ

Synthesis and electrochemical and spectroelectrochemical characterization of chloromanganese(III) phthalocyanines

Mukaddes ÖZÇEŞMECİ, İlgın NAR, Esin HAMURYUDAN

Encapsulation of phthalocyanine-C60 fullerene conjugates into metallosupramolecular subphthalocyanine capsules: a turn of the screw

Irene SANCHEZ MOLINA, Mine INCE, Giovanni BOTTARI, Christian Georges CLAESSENS

Synthesis and characterization of tetra-substituted titanium(IV) phthalocyanines with axial ligand

Deniz Kutlu TARAKCI, İlke GÜROL

Microwave-assisted synthesis and characterization of Co(II) phthalocyanine and investigation of its catalytic activity on 4-nitrophenol oxidation

Ece Tuğba SAKA, Zekeriya BIYIKLIOĞLU, Halit KANTEKİN

Effect of the anchoring group in porphyrin sensitizers: phosphonate versus carboxylate linkages

Christine STERN, Alla BESSMERTNYKH LEMEUNE, Yulia GORBUNOVA

Nature of second-order nonlinear optical response in phthalocyanine derivatives: a density functional theory study

Chiming WANG, Chao CHEN, Qingqi ZHANG, Dongdong QI, Jianzhuang JIANG

Coupling ferrocene to brominated tetraazaporphyrin: exploring an alternative synthetic pathway for preparation of ferrocene-containing tetraazaporphyrins

Victor N. NEMYKIN, Elena A. MAKAROVA, Nathan R. ERICKSON, Pavlo V. SOLNTSEV