Coupling ferrocene to brominated tetraazaporphyrin: exploring an alternative synthetic pathway for preparation of ferrocene-containing tetraazaporphyrins

A Castro--Stephens coupling reaction between metal-free 3(2),8(7)-dibromo- 2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin and (ferrocenylethynyl)copper resulted in the formation of copper 2(3),7(8),12(13), 17(18)-tetra-tert-butyl-3(2), 8(7)-di(ferrocenylethynyl)-5,10,15,20-tetraazaporphyrin and copper 2(3),7(8),12(13),17(18)-tetra-tert-butyl-3(2)-ferrocenylethynyl-5, 10,15,20-tetraazaporphyrin, which were separated in the form of 2 positional isomers along with copper 3(2)-bromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin and copper 2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin. A similar reaction with metal-free 3(2),8(7),13(12), 18(17)-tetrabromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin resulted in only a trace amount of 3(2),8(7),13(12)-tribromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-18(17) -ferrocenylethynyl-5,10,15,20-tetraazaporphyrin, while no products with larger number of organometallic substituents were observed. Direct coupling between ferrocenelithium and 3(2),8(7)-dibromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin resulted in a debromination reaction accompanied by very minor dimerization of the tetraazaporphyrin core, which was explained based on the steric properties of the parent tetraazaporphyrin. The target compounds were characterized using APCI mass spectrometry, UV-vis, and MCD spectroscopy, while the electronic structure of ferrocenylethyl-containing products was predicted by DFT approach. X-ray structures of individual positional isomers of copper 2-bromo-3,7,12,18-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin and 3, 7, 12,18-tetrabromo-2,8,13,17-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin were also discussed.

Coupling ferrocene to brominated tetraazaporphyrin: exploring an alternative synthetic pathway for preparation of ferrocene-containing tetraazaporphyrins

A Castro--Stephens coupling reaction between metal-free 3(2),8(7)-dibromo- 2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin and (ferrocenylethynyl)copper resulted in the formation of copper 2(3),7(8),12(13), 17(18)-tetra-tert-butyl-3(2), 8(7)-di(ferrocenylethynyl)-5,10,15,20-tetraazaporphyrin and copper 2(3),7(8),12(13),17(18)-tetra-tert-butyl-3(2)-ferrocenylethynyl-5, 10,15,20-tetraazaporphyrin, which were separated in the form of 2 positional isomers along with copper 3(2)-bromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin and copper 2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin. A similar reaction with metal-free 3(2),8(7),13(12), 18(17)-tetrabromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin resulted in only a trace amount of 3(2),8(7),13(12)-tribromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-18(17) -ferrocenylethynyl-5,10,15,20-tetraazaporphyrin, while no products with larger number of organometallic substituents were observed. Direct coupling between ferrocenelithium and 3(2),8(7)-dibromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin resulted in a debromination reaction accompanied by very minor dimerization of the tetraazaporphyrin core, which was explained based on the steric properties of the parent tetraazaporphyrin. The target compounds were characterized using APCI mass spectrometry, UV-vis, and MCD spectroscopy, while the electronic structure of ferrocenylethyl-containing products was predicted by DFT approach. X-ray structures of individual positional isomers of copper 2-bromo-3,7,12,18-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin and 3, 7, 12,18-tetrabromo-2,8,13,17-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin were also discussed.

___

  • Nemykin, V. N.; Lukyanets, E. A. ARKIVOC, 2010, (i), 136–208.
  • Nemykin, V. N.; Lukyanets, E. A. In Handbook of Porphyrin Science, Vol. 3, Kadish, K. M.; Smith, K. M.; Guilard
  • R. (Eds.); World Scientific: Singapore, 2010, pp 1–323.
  • McKeown, N. B. Phthalocyanine Materials: Structure, Synthesis and Function; Cambridge Univ. Press: Cambridge, UK, 1998.
  • Nemykin, V. N.; Dudkin, S. V.; Dumoulin, F.; Hirel, C.; Gurek, A. G.; Ahsen, V. ARKIVOC 2014, (i), 142–204.
  • Lukyanets, E. A. J. Porphyrins Phthalocyanines 1999, 3, 424–432.
  • De Rosa, A.; Naviglio, D.; Di Luccia, A. Curr. Cancer Therapy Rev. 2011, 7, 234–247.
  • Sorokin, A. B. Chem. Rev. 2013, 113, 8152–8191.
  • Sorokin, A. B.; Kudrik, E. V.; Bouchu, D. Chem. Commun. 2008, 2562–2564.
  • Geraskin, I. M.; Luedtke, M. W.; Neu, H. M.; Nemykin, V. N.; Zhdankin, V. V. Tetr. Lett. 2008, 49, 7410–7412. 10.Hurditch, R. Adv. Colour Sci. Technology 2001, 4, 33–40.
  • Chen, X.; Li, C.; Graetzel, M.; Kostecki, R.; Mao, S. S. Chem. Soc. Rev. 2012, 41, 7909–7937.
  • D’Souza, F.; Ito, O. Chem. Soc. Rev. 2012, 41, 86–96. 13.Harbeck, S.; Atilla, D.; Dulger, I.; Harbeck, M.; Gurek, A. G.; Ozturk, Z. Z.; Ahsen, V. Sensors Actuators, B:
  • Chemical 2014, 191, 750–756.
  • Fabre, B. Acc. Chem. Res. 2010, 43, 1509–1578. 15.Stepnicka P. (Ed.). Ferrocenes: Ligands, Materials and Biomolecules; John Wiley & Sons, Ltd.: Chichester, UK, 2008.
  • Vecchi, A.; Galloni, P.; Floris, B.; Nemykin, V. N. J. Porphyrins Phthalocyanines 2013, 17, 165–196.
  • Bucher, C.; Devillers, C. H.; Moutet, J.-C.; Royal, G.; Saint-Aman, E. Coord. Chem. Rev. 2009, 253, 21–36.
  • Suijkerbuijk, B. M. J. M.; Klein Gebbink, R. J. M. Angew. Chem., Int. Ed. 2008, 47, 7396–7421.
  • Galloni, P.; Floris, B.; de Cola, L.; Cecchetto, E.; Williams, R. M. J. Phys. Chem. C 2007, 111, 1517–1523.
  • Lvova, L.; Galloni, P.; Floris, B.; Lundstroem, I.; Paolesse, R.; Di Natale, C. Sensors 2013, 13, 5841–5856.
  • Nemykin, V. N.; Rohde, G. T.; Barrett, C. D.; Hadt, R. G.; Bizzarri, C.; Galloni, P.; Floris, B.; Nowik, I.; Herber,
  • R. H.; Marrani, A. G.; Zanoni, R.; Loim, N. M. J. Am. Chem. Soc. 2009, 131, 14969–14978.
  • Nemykin, V. N.; Barrett, C. D.; Hadt, R. G.; Subbotin, R. I.; Maximov, A. Y.; Polshin, E. V.; Koposov, A. Y.
  • Dalton Trans. 2007, 3378–3389. 23.Nemykin, V. N.; Galloni, P.; Floris, B.; Barrett, C. D.; Hadt, R. G.; Subbotin, R. I.; Marrani, A. G.; Zanoni, R.;
  • Loim, N. M. Dalton Trans. 2008, 4233–4246.
  • Nemykin, V. N.; Rohde, G. T.; Barrett, C. D.; Hadt, R. G.; Sabin, J. R.; Reina, G.; Galloni, P.; Floris, B. Inorg.
  • Chem. 2010, 49, 7497–7509. 25.Rohde, G. T.; Sabin, J. R.; Barrett, C. D.; Nemykin, V. N. New J. Chem. 2011, 35, 1440–1448. 26.Dammer, S. J.; Solntsev, P. V.; Sabin, J. R.; Nemykin, V. N. Inorg. Chem. 2013, 52, 9496–9510. 27.Sirbu, D.; Turta, C.; Benniston, A. C.; Abou-Chahine, F.; Lemmetyinen, H.; Tkachenko, N. V.; Wood, C.; Gibson,
  • E. RSC Advances 2014, 4, 22733–22742. 28.Su, M.; Li, Q.; Wang, Y.; Chen, S.; Zhao, H.; Bian, Z. Chin. J. Org. Chem. 2013, 33, 815–819. 29.Loim, N. M.; Abramova, N. V.; Sokolov, V. I. Mendeleev Commun. 1996, 46–47. 30.Burrell, A. K.; Campbell, W. M.; Jameson G. B.; Officer, D. L.; Boyd, P. D. W.; Zhao, Z.; Cocks, P. A.; Gordon,
  • K. C. Chem. Commun. 1999, 637–638. 31.Narayanan, S.J.; Venkatraman, S.; Dey, S. R.; Sridevi, B.; Anand, V. R. G.; Chandrashekar, T. K. Synlett 2000, 1834–1836.
  • Rhee, S. W.; Na, Y. H.; Do, Y.; Kim, J. Inorg. Chim. Acta 2000, 309, 49–56.
  • Shoji, O.; Okada, S.; Satake, A.; Kobuke Y. J. Am. Chem. Soc. 2005, 127, 2201–2210. 34.Shoji, O.; Tanaka, H.; Kawai, T.; Kobuke, Y. J. Am. Chem. Soc. 2005, 127, 8598–8599.
  • Gryko, D. T.; Piechowska, J.; Jaworski, J. S.; Galezowski, M.; Tasior, M.; Cembor, M.; Butenschoen, H. New J.
  • Chem. 2007, 31, 1613–1619.
  • Ziegler, C. J.; Chanawanno, K.; Hasheminsasab, A.; Zatsikha, Y. V.; Maligaspe, E.; Nemykin, V. N. Inorg. Chem. 2014, 53, 4751–4755.
  • Misra, R.; Dhokale, B.; Jadhav, T.; Mobin, S. M. Dalton Trans. 2013, 42, 13658–13666.
  • Galangau, O.; Fabre-Francke, I.; Munteanu, S.; Dumas-Verdes, C.; Clavier, G.; Meallet-Renault, R.; Pansu, R. B.;
  • Hartl, F.; Miomandre, F. Electrochimica Acta 2013, 87, 809–815. 43.Liu, J.-Y.; El-Khouly, M. E.; Fukuzumi, S.; Ng, D. K. P. ChemPhysChem 2012, 13, 2030–2036.
  • Bandi, V.; El-Khouly, M. E.; Ohkubo, K.; Nesterov, V. N.; Zandler, M. E.; Fukuzumi, S.; D’Souza, F. J. Phys.
  • Chem. C 2014, 118, 2321–2332. 45.Nemykin, V. N.; Kobayashi, N. Chem. Commun. 2001, 165–166.
  • Lukyanets, E. A.; Nemykin, V. N. J. Porphyrins Phthalocyanines 2010, 14, 1–40.
  • Nemykin, V. N.; Makarova, E. A.; Grosland, J. O.; Hadt, R. G.; Koposov, A. Y. Inorg. Chem. 2007, 46, 9591–9601.
  • Nemykin, V. N.; Maximov, A. Y.; Koposov, A. Y. Organometallics 2007, 26, 3138–3148.
  • Kopranenkov, V. N.; Makarova, E. A.; Shevtsov, V. K.; Lukyanets, E. A. Khim. Geterotsikl. Soed. 1994, 1206–1212.
  • Fittig, R.; K¨onig, J. Ann. Chem. Pharm. 1867, 144, 277–294.
  • Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 28, 3313–3315. 52.Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138–163.
  • Bildstein, B.; Schweiger, M.; Kopacka, H.; Ongania, K.-H.; Wurst, K. Organometallics 1998, 17, 2414–2424. 54.Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,
  • J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian, Inc., Wallingford CT, 2009. 55.QMForge program: http://qmforge.sourceforge.net/.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Microwave-assisted synthesis and characterization of Co(II) phthalocyanine and investigation of its catalytic activity on 4-nitrophenol oxidation

Ece Tuğba SAKA, Zekeriya BIYIKLIOĞLU, Halit KANTEKİN

Synthesis and electrochemical and spectroelectrochemical characterization of chloromanganese(III) phthalocyanines

Mukaddes ÖZÇEŞMECİ, İlgın NAR, Esin HAMURYUDAN

Synthesis and properties of novel polymeric metal-free and metallophthalocyanines containing peripherally long 1,2-bis[(3-oxapropyl)oxa]benzene derivatives

Ahmet BİLGİN, Durmuş YANMAZ, Çiğdem YAĞCI

Water-soluble phthalocyanines containing azo dye; microwave-assisted synthesis and photochemical properties of ZnPcs

Cihan KANTAR, Emrah ATACI, Selami ŞAŞMAZ

Effect of the anchoring group in porphyrin sensitizers: phosphonate versus carboxylate linkages

Christine STERN, Alla BESSMERTNYKH LEMEUNE, Yulia GORBUNOVA

Microwave-assisted synthesis of novel nonperipherally substituted metallophthalocyanines bearing (7-(trifluoromethyl)quinolin-4-yl)oxy groups

Didem EVREN, Hacer Yasemin YENİLMEZ, Ayfer Kalkan BURAT

Nature of second-order nonlinear optical response in phthalocyanine derivatives: a density functional theory study

Chiming WANG, Chao CHEN, Qingqi ZHANG, Dongdong QI, Jianzhuang JIANG

Coupling ferrocene to brominated tetraazaporphyrin: exploring an alternative synthetic pathway for preparation of ferrocene-containing tetraazaporphyrins

Victor N. NEMYKIN, Elena A. MAKAROVA, Nathan R. ERICKSON, Pavlo V. SOLNTSEV

Encapsulation of phthalocyanine-C60 fullerene conjugates into metallosupramolecular subphthalocyanine capsules: a turn of the screw

Irene SANCHEZ MOLINA, Mine INCE, Giovanni BOTTARI, Christian Georges CLAESSENS

Synthesis, characterization, and photophysical and photochemical properties of 3-(4-phenyloxy)coumarin containing metallo- and metal-free phthalocyanines

Nurullah KARTALOĞLU, Aliye Aslı ESENPINAR