Induction of lutein production in Scenedesmus obliquus under different culture conditions prior to its semipreparative isolation

Induction of lutein production in Scenedesmus obliquus under different culture conditions prior to its semipreparative isolation

Microalgae with their improved growth rates and accumulation of high-value-added products make their commercial production attractive. Among them, lutein, which is a carotenoid, plays a very important role due to its various applications in the food and pharmaceutical industry. Induction of its biosynthesis can be triggered by various stress conditions like light. In this study, three different light intensities (50,150 and 300 µmol photons/$m^2$ s) and aeration rates (1, 3, and 5 L/min) were utilized to induce the lutein biosynthesis and biomass productivity in Scenedesmus obliquus. Lutein was isolated by preparative chromatography using a semiprep $C_{30}$ column (10 × 250 mm, 5µm) and its confirmation was made by LC-MS/MS. According to the results, Scenedesmus obliquus synthesized the maximum lutein (8.01 ± 0.1 mg/g) with biomass productivity of 1.698 g/L at 150 µmol photons/$m^2$ s light intensity using 3 L/min as aeration rate. To the best of the authors’ knowledge, this was the first study that the lutein was isolated by preparative chromatography using semiprep$C_{30}$ carotenoid column with a simple and rapid separation, which can be used as a reference methodology for the isolation of other carotenoids. Scenedesmus obliquus can be an important alternative source for commercial production of lutein, as it is indicated from the results of this study

___

  • 1. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. Journal of bioscience and bioengineering 2006; 101 (2): 87-96. doi: 10.1263/jbb.101.87
  • 2. Britton G, Liaaen-Jensen S, Pfander H (2012). Carotenoids: handbook. Birkhäuser.
  • 3. Muller P, Li XP, Niyogi KK. Non-photochemical quenching. A response to excess light energy. Plant Physiology 2001; 125 (4): 1558-1566. doi: 10.1104/pp.125.4.1558
  • 4. Telfer A. Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of beta-carotene. Plant and Cell Physiology 2014; 55 (7): 1216-1223. doi: 10.1093/pcp/pcu040
  • 5. Triantaphylides C, Havaux M. Singlet oxygen in plants: production, detoxification and signaling. Trends in Plant Science 2009; 14 (4): 219-228. doi: 10.1016/j.tplants.2009.01.008
  • 6. Nishiyama Y, Allakhverdiev SI, Murata N. Regulation by environmental conditions of the repair of photosystem II in cyanobacteria, in Photoprotection, photoinhibition, gene regulation, and environment. Dordrecht: Springer,2008.
  • 7. Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends in Plant Science 2008; 13 (4): 178-182.
  • 8. Guedes AC, Amaro HM, Malcata FX. Microalgae as sources of carotenoids. Marine Drugs 2011; 9 (4): 625-644. doi: 10.3390/md9040625
  • 9. Saha SK, Ermis H, Murray P. Marine Microalgae for Potential Lutein Production. Applied Sciences-Basel 2020; 10 (18): 6457. doi: ARTN 645710.3390/app10186457
  • 10. Lin J-H, Lee D-J, Chang J-S. Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology 2015; 184: 421-428. doi: 10.1016/j.biortech.2014.09.099
  • 11. Saha SK, Ermis H, Murray P. Marine microalgae for potential lutein production. Applied Sciences 2020; 10 (18): 6457.
  • 12. Pintea A. HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis 2003; 47 (1-4): 37-40.
  • 13. Manke Natchigal A, Oliveira Stringheta A, Corrêa Bertoldi M, Stringheta P. Quantification and characterization of lutein from Tagetes (Tagetes patula L.) and Calendula (Calendula officinalis L.) flowers. In: XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010); International Symposium on 939. 2010. pp. 309-314.
  • 14. Fernández-Sevilla JM, Fernández FA, Grima EM. Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology 2010; 86 (1): 27-40.
  • 15. Becerra MO, Contreras LM, Lo MH, Díaz JM, Herrera GC. Lutein as a functional food ingredient: Stability and bioavailability. Journal of Functional Foods 2020; 66: 103771.
  • 16. Ho SH, Chan MC, Liub CC, Chen CY, Lee WL et al. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology 2014; 152: 275-282. doi: 10.1016/j.biortech.2013.11.031
  • 17. Zhao X, Ma R, Liu X, Ho SH, Xieet Y et al. Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering 2019; 42 (3): 435-443. doi: 10.1007/s00449-018-2047-4
  • 18. Schüler LM, Santos T, Pereira H, Duarte P, Katkam et al. Gangadhar et al. Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Research 2020; 45: 101732.
  • 19. Ma R, Zhao X, Xie Y, Ho SH, Chen J. Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. Bioresource Technology 2019; 275: 416-420. doi: 10.1016/j.biortech.2018.12.109
  • 20. Chen WC, Hsu YC, Chang JS, Ho SH, Wang LF et al. Enhancing production of lutein by a mixotrophic cultivation system using microalga Scenedesmus obliquus CWL-1. Bioresource Technology 2019; 291: 121891. doi: 10.1016/j.biortech.2019.121891
  • 21. Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG. Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Applied Microbiology and Biotechnology 2007; 73 (6): 1259-1266. doi: 10.1007/s00253-006-0598-9
  • 22. Fábregas J, Dominguez A, Regueiro M, Maseda A, Otero A. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Applied Microbiology and Biotechnology 2000; 53 (5): 530-535. doi: 10.1007/s002530051652
  • 23. Becker EW. Microalgae: biotechnology and microbiology. Vol. 10. Cambridge University Press, 1994.
  • 24. Erdoğan A, Demirel Z, Eroğlu AE, Dalay MC. Carotenoid profile in Prochlorococcus sp. and enrichment of lutein using different nitrogen sources. Journal of Applied Phycology 2016; 28 (6): 3251-3257. doi: 10.1007/s10811-016-0861-0
  • 25. Erdoğan A, Çağır A, Dalay MC, Eroğlu AE. Composition of carotenoids in Scenedesmus protuberans: Application of chromatographic and spectroscopic methods. Food Analytical Methods 2015; 8 (8): 1970-1978. doi: 10.1007/s12161-015-0088-8
  • 26. Igielska-Kalwat J, Gościańska J, Nowak I. Carotenoids as natural antioxidants. Postepy higieny i medycyny doswiadczalnej (Online) 2015; 69: p. 418-428. doi: 10.5604/17322693.1148335
  • 27. He R-R, Tsoi B, Lan F, Yao N, Yao XS, Kurihara H. Antioxidant properties of lutein contribute to the protection against lipopolysaccharideinduced uveitis in mice. Chinese Medicine 2011; 6 (1): 1-8. doi: 10.1186/1749-8546-6-38
  • 28. Buscemi S, et al. The effect of lutein on eye and extra-eye health. Nutrients 2018; 10 (9): 1321. doi: 10.3390/nu10091321
  • 29. Minhas AK, Hodgson P, Barrow CJ, Adholeya A. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids. Frontiers in Microbiology 2016; 7: 546. doi: 10.3389/fmicb.2016.00546
  • 30. Sanchez JF, Fernández-Sevilla JM, Acién FG, Cerón MC, Pérez-Parra J et al. Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Applied Microbiology and Biotechnology 2008; 79 (5): 719-729. doi: 10.1007/ s00253-008-1494-2
  • 31. Xie Y, et al. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: effects of nitrate concentration, light intensity and fed-batch operation. Bioresource Technology 2013; 144: 435-444. doi: 10.1016/j.biortech.2013.06.064
  • 32. Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak, MN. Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa. Russian Journal of Plant Physiology 2008; 55 (4): 455-462. doi: 10.1134/S1021443708040043
  • 33. Faraloni C Torzillo G. Synthesis of antioxidant carotenoids in microalgae in response to physiological stress. Carotenoids. InTechOpen 2017; 143-157.
  • 34. He Q, Yang H, Wu L, Hu C. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresource Technology 2015; 191: 219-228. doi: 10.1016/j.biortech.2015.05.021
  • 35. Ramos A, et al. Isolation and characterization of a stress-inducible Dunaliella salina Lcy-beta gene encoding a functional lycopene betacyclase. Applied Microbiology and Biotechnology 2008; 79 (5): 819-828. doi: 10.1007/s00253-008-1492-4
  • 36. Fan XD, Hou Y, Huang XX, Qiu TQ, Jiang JG. Ultrasound-Enhanced Subcritical CO2 Extraction of Lutein from Chlorella pyrenoidosa. Journal of Agricultural and Food Chemistry 2015; 63 (18): 4597-4605. doi: 10.1021/acs.jafc.5b00461
  • 37. Guarnieri MT, Pienkos PT. Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynthesis Research 2015; 123 (3): 255- 263. doi: 10.1007/s11120-014-9989-4
  • 38. Maoka T, Fujiwara Y, Hashimoto K, Akimoto N. Rapid Identification of carotenoids in a combination of liquid chromatography/UVvisible absorption spectrometry by photodiode-array detector and atomospheric pressure chemical ionization mass spectrometry (LC/ PAD/APCI-MS). Journal of Oleo Science 2002; 51 (1): 1-9.
  • 39. Rivera SM, Christou P, Canela-Garayoa R. Identification of carotenoids using mass spectrometry. Mass Spectrometry Reviews 2014; 33 (5): 353-372. doi: 10.1002/mas.21390.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Design, synthesis, and in vitro antitumor activity of 6-aryloxyl substituted quinazoline derivatives

Meixia FAN, Lei YAO

Selective hydrogenation of diphenylacetylene using NiCo nanoparticles supported on mesoporous carbon as catalyst

Alyaa S. SHIDDIQAH, Iman ABDULLAH, Yuni K. KRISNANDI

Synthesis of a novel antiweathering nanocomposite superhydrophobic room temperature vulcanized (RTV) silicon rubber enhanced with nanosilica for coating high voltage insulators

Khalid K. ABBAS, Mayyadah S. ABED, Ali F. JASIM

Synthesis of some new isoxazole compounds and their biological tyrosinase and antioxidant activities

Seda FANDAKLI

A new study of dynamic mechanical analysis and the microstructure of polyurethane foams filled

Noureddine BOUMDOUHA, Achraf BOUDIAF, Zitouni SAFIDINE

Catalytic activity of ethylbenzene with product selectivity by gold nanoparticles supported on zinc oxide

Azman MAAMOR, H.N.M. Ekramul MAHMUD, Wan Jefrey BASIRUN, Iskandar ABDULLAH, Afiq ANWAR

Biological potential of copper complexes: a review

Jamshaid ASHRAF, Muhammad Asad RIAZ

Electroanalytical investigation and voltammetric quantification of antiviral drug favipiravir in the pharmaceutical formulation and urine sample using a glassy carbon electrode in anionic surfactant media

Zühre ŞENTÜRK, Zeynep AKÇA, Yavuz YARDIM, Hande İzem ÖZOK

Adsorption of dimethyl disulfide onto activated carbon cloth

Firdevs MERT SİVRİ, Numan HODA, Leyla BUDAMA AKPOLAT, Ayhan TOPUZ, Emrah EROĞLU

Ultrafiltration-based sample preparation and HPLC-UV determination of diclofenac in human plasma samples

Göksel ARLİ, Mustafa Sinan KAYNAK, Murat SOYSEVEN, Hassan Y. ABOUL ENEIN, Mustafa ÇELEBİER, Ayşegül DOĞAN, Merve NENNİ