Synthesis of some NH- and NH,S- substituted 1,4-quinones

Synthesis of some NH- and NH,S- substituted 1,4-quinones

A series of NH-substituted-1,4-quinones, possessing one, two, three or not chlorine, were synthesized by the reaction between different quinones (p-chloranil (1), p-toluquinone (2), or 2,3-dichloro-1,4-naphthoquinone (3)) and (-)-cis-myrtanylamine (5) via nucleophilic reactions. Moreover, 2-bromo-1,4-naphthoquinone (4) was reacted with 2-(methylthio)ethylamine (11) to produce aminosubstituted naphthoquinones (12 and 13), bearing with bromine and not bromine. In addition, 2-bromo-1,4-naphthoquinone (4) was reacted with 4′-aminodibenzo-18-crown-6 (14) and 4′-aminobenzo-18-crown-6 (16) to yield crown-containing 1,4-naphthoquinones (15 and 17), respectively. New compounds were characterized, providing 1 H NMR, 13C NMR, FTIR, MS-ESI, UV/Vis and elemental analysis.

___

  • 1. Monks TJ, Hanzlık RP, Cohen GM, Ross D, Graham DG. Quinone chemistry and toxicity. Toxicology and Applied Pharmacology 1992; 112: 2-16. doi: 10.1016/0041-008X(92)90273-U
  • 2. Kutyrev AA. Nucleophilic reactions of quinones. Tetrahedron report number 298, Tetrahedron 1991; 47 (38): 8043-8065. doi: 10.1016/ S0040-4020(01)91002-6
  • 3. Delarmelina M, Daltoe RD, Cerri MF, Madeira KP, Rangel LBA et al. Synthesis, Antitumor Activity and Docking of 2,3-(Substituted)-1,4- naphthoquinone derivatives containing nitrogen, oxygen and sulfur. Journal of the Brazilian Chemical Society 2015; 26 (9): 1804-1816. doi: 10.5935/0103-5053.20150157
  • 4. Neckers L, Schulte TW, Mimnaugh E. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Investigational. New Drugs 1999; 17: 361-373. doi: 10.1023/A:1006382320697
  • 5. Tandon VK, Maurya HK, Kumar S, Rashid A, Panda D. Synthesis and evaluation of 2-Heteroaryl and 2,3-Diheteroaryl-1,4-naphthoquinones that potently induce apoptosis in cancer cells. RSC Advances 2014; 4: 12441-12447. doi: 10.1039/C3RA47720G
  • 6. Gafner S, Wolfender JL, Nianga M, Stoeckli-Evans H, Hostettmann K. Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots. Phytochemistry 1996; 42 (5): 1315-1320. doi: 10.1016/0031-9422(96)00135-5
  • 7. Opitz W, Pelster B, Fruchtmann R, Krupka U, Gauss W et al. 1,4-Naphthoquinone derivatives having anti-inflammatory action. U.S. Patent 4,628,062, Dec. 9, 1986.
  • 8. Tran T, Saheba E, Arcerio AV, Chavez V, Li Q-yi et al. Quinones as antimycobacterial agents. Bioorganic & Medicinal Chemistry 2004; 12: 4809-4813. doi: 10.1016/j.bmc.2004.07.015
  • 9. Silva TMS, Camara CA, Barbosa TP, Soares AZ, Cunha LC da et al. Molluscicidal activity of synthetic lapachol amino and hydrogenated derivatives. Bioorganic & Medicinal Chemistry 2005; 13: 193-196. doi: 10.1016/j.bmc.2004.09.043
  • 10. Ryu, CK, Lee IK, Jung SH, Lee CO. Synthesis and cytotoxic activities of 6-chloro-7-arylamino-5,8-isoquinolinediones. Bioorganic & Medicinal Chemistry Letters 1999; 9: 1075-1080. doi: 10.1016/S0960-894X(99)00152-3
  • 11. Satheshkumar A, Ganesh K, Elango KP. Charge transfer facilitated direct electrophilic substitution in phenylaminonaphthoquinones: experimental, theoretical and electrochemical studies. New Journal of Chemistry 2014; 38: 993-1003. doi: 10.1039/C3NJ01228J
  • 12. Tudor G, Gutierrez P, Aguilera-Gutierrez A, Sausville EA. Cytotoxicity and apoptosis of benzoquinones: redox cycling, cytochrome c release, and BAD protein expression. Biochemical Pharmacology 2003; 65: 1061-1075. doi: 10.1016/S0006-2952(03)00013-3
  • 13. Pal S, Jadhav M, Weyhermüller T, Patil Y, Nethaji M et al. Molecular structures and antiproliferative activity of side-chain saturated and homologated analogs of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone. Journal of Molecular Structure 2013; 1049: 355-361. doi: 10.1016/j.molstruc.2013.06.062
  • 14. Bao N, Ou J, Xu M, Guan F, Shi W et al. Novel NO-releasing plumbagin derivatives: design, synthesis and evaluation of antiproliferative activity. European Journal of Medicinal Chemistry 2017; 137: 88-95. doi: 10.1016/j.ejmech.2017.05.046
  • 15. Babula P, Vaverkova V, Poborilova Z, Ballova L, Masarik M et al. Phytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots. Plant Physiology and Biochemistry 2014; 84: 78-86. doi: 10.1016/j.plaphy.2014.08.027
  • 16. Papageorgiou VP, Assimopoulou AN, Couladouros E, Hepworth D, Nicolaou KC. The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angewandte. Chemie International Edition 1999; 38: 270-300. doi: 10.1002/(SICI)1521- 3773(19990201)38:3<270::AID-ANIE270>3.0.CO;2-0
  • 17. Ding Y, Chen ZJ, Liu S, Che D, Vetter M et al. Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. Journal of Pharmacy and Pharmacology 2005; 57: 111-116. doi: 10.1211/0022357055119
  • 18. Kumagai Y, Shinkai Y, Miura T, Cho AK. The chemical biology of naphthoquinones and its environmental implications. Annual Review of Pharmacology and Toxicology 2012; 52: 221-247. doi: 10.1146/annurev-pharmtox-010611-134517
  • 19. Silva MG, Camara CA, Silva TMS, Feitosa ACS, Meira AS et al. Synthesis of 2,3-Diyne-1,4-naphthoquinone derivatives and evaluation of cytotoxic activity against tumor cell lines. Journal of the Brazilian Chemical Society 2013; 24 (9): 1420-1426. doi: 10.5935/0103- 5053.20130180
  • 20. Satheshkumar A, Elango KP. Spectroscopic and theoretical studies on the nucleophilic substitution of 2,3-dichloronaphthoquinone with para-substituted anilinesin solid state via initial charge transfer complexation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012; 98: 378-383. doi: 10.1016/j.saa.2012.08.056
  • 21. Tandon VK, Maurya HK. Water-promoted unprecedented chemoselective nucleophilic substitution reactions of 1,4-quinones with oxygen nucleophiles in aqueous micelles. Tetrahedron Letters. 2010; 51: 3843-3847. doi: 10.1016/j.tetlet.2010.05.071
  • 22. Deniz NG, Ozyurek M, Tufan AN, Apak R. One-pot synthesis, characterization, and antioxidant capacity of sulfur- and oxygen-substituted 1,4-naphthoquinones and a structural study. Monatshefte für Chemie 2015; 146: 2117-2126. doi: 10.1007/s00706-015-1517-5
  • 23. Tapia RA, Cantuarias L, Cuellar M, Villena J. Microwave-assisted reaction of 2,3-Dichloronaphthoquinone with aminopyridines. Journal of the Brazilian Chemical Society 2009; 20 (5): 999-1002. doi: 10.1590/S0103-50532009000500027
  • 24. Kadela-Tomanek M, Bebenek E, Chrobak E, Latocha M, Boryczka S. Alkoxy and enediyne derivatives containing 1,4-Benzoquinone subunits synthesis and antitumor activity. Molecules 2017; 22: 447. doi: 10.3390/molecules22030447
  • 25. Valderrama JA, Leiva H, Rodriguez JA, Theodulaz C, Schmeda-Hirshmann G. Studies on quinones. Part 43: synthesis and cytotoxic evaluation of polyoxyethylene-containing 1,4-naphthoquinones. Bioorganic & Medicinal Chemistry 2008; 16: 3687-3693. doi: 10.1016/j. bmc.2008.02.018
  • 26. Lubenets EG, Kusov SZ, Ektova LV, Kobrina VN, Kornaukhova LM et al. Synthesis and properties of naphthoquinonylamino-substituted benzocrown ethers. Russian Chemical Bulletin 1994; 43 (3): 410-412. doi: 10.1007/BF01169717
  • 27. Martyanov TP, Ushakov EN, Savelyev VA, Klimenko LS. Crown-containing naphtho and anthraquinones: synthesis and complexation with alkali and alkaline-earth metal cations. Russian Chemical Bulletin International Edition 2012; 61 (12): 2282-2294. doi: 10.1007/ s11172-012-0323-z
  • 28. Nishina A, Uchibori T. Antimicrobial activity of 2,6-dimethoxy-p-benzoquinone, isolated from thick-stemmed bamboo, and its analogs. Agricultural and Biological Chemistry 1991; 55 (9): 2395-2398. doi: 10.1080/00021369.1991.10870973
  • 29. Lana EJL, Carazza F, Takahashi JA. Antibacterial evaluation of 1,4-benzoquinone derivatives. Journal of Agricultural and Food Chemistry 2006; 54: 2053-2056. doi: 10.1021/jf052407z
  • 30. Barbosa LCA, Pereira UA, Maltha CRA, Teixeira RR, Valente VMM et al. Synthesis and biological evaluation of 2,5-bis(alkylamino)-1,4- benzoquinones. Molecules 2010; 15: 5629-5643. doi: 10.3390/molecules15085629
  • 31. Leslie Gunatilaka AA, Berger JM, Evans R, Miller JS, Wisse JH et al. Isolation, synthesis, and structure-activity relationships of bioactive benzoquinones from Miconia lepidota from the suriname rainforest. Journal of Natural Products 2001; 64: 2-5. doi: 10.1021/np000219r
  • 32. Siraki AG, Chan TS, JO’Brien P. Application of quantitative structure-toxicity relationships for the comparison of the cytotoxicity of 14 p-Benzoquinone congeners in primary cultured rat hepatocytes versus PC12 cells. Toxicological Sciences. 2004; 81: 148-159. doi: 10.1093/ toxsci/kfh182
  • 33. You ZL, Xian DM, Zhang M, Cheng XS, Li XF. Synthesis, biological evaluation, and molecular docking studies of 2,5-substituted-1,4- benzoquinone as novel urease inhibitors. Bioorganic & Medicinal Chemistry 2012; 20: 4889-4894. doi: 10.1016/j.bmc.2012.07.002
  • 34. Mori K, Takahashi K, Kishi T, Sayo H. Synthesis and biological activities of 2,3-dimethyl-1,4-benzoquinones having alkylthio and arylthio side chains. Chemical and Pharmaceutical Bulletin 1987; 35 (3): 1270-1274. doi: 10.1248/cpb.35.1270
  • 35. Bayen S, Barooah N, Sarma RJ, Sen TK, Karmakar A et al. Synthesis, structure and electrochemical properties of 2,5-bis(alkyl/arylamino)1,4- benzoquinones and 2-arylamino-1,4-naphthoquinones. Dyes and Pigments 2007; 75: 770-775. doi: 10.1016/j.dyepig.2006.07.033
  • 36. Katritzky AR, Fedoseyenko D, Mohapatra PP, Steel PJ. Reactions of p-benzoquinone with sulfur nucleophiles. Synthesis 2008; 5: 777-787. doi: 10.1055/s-2008-1032186
  • 37. Martinez-Cifuentes M, Clavijo-Allancan G, Di Vaggio-Conejeros C, Weiss-Lopez B, Araya-Maturana R. On-Water reactivity and regioselectivity of quinones in C-N coupling with amines: experimental and theoretical study. Australian Journal of Chemistry 2014; 67: 217-224. doi: 10.1071/CH13355
  • 38. Wu H, Zhang D, Zhang G, Zhu D. New substituted tetrathiafulvalene-quinone dyads: the influences of electron accepting abilities of quinone units on the metal ion-promoted electron-transfer processes. The Journal of Organic Chemistry 2008; 73: 4271-4274. doi: 10.1021/jo800581t
  • 39. Singh D, Kushwaha A, Banerjee A, Prasad RL. Synthesis and characterization of multifunctional coordination polymer of the type[CuxNi1-x(dedb).$2H_2O]n$. Solid State Sciences 2015; 45: 35-45. doi: 10.1016/j.solidstatesciences.2015.04.004
  • 40. Yildirim H, Bayrak N, Tuyun AF, Kara Mataraci E, Celik Ozbek B et al. 2,3-disubstituted-1,4-naphthoquinones containing an arylamine with trifluoromethyl group: synthesis, biological evaluation, and computational study. RSC Advances 2017; 7 (41): 25753-25764. doi: 10.1039/C7RA00868F
  • 41. Goksel FS, Bayrak N, Ibis C. Synthesis of novel S,O-Substituted 1,4-benzoquinones. Phosphorus, Sulfur, and Silicon and Related Elements 2014; 189: 113-123. doi: 10.1080/10426507.2013.798787
  • 42. Bayrak N, Yıldırım H, Tuyun AF, Kara Mataracı E, Çelik Ozbek B et al. Synthesis, computational study, and evaluation of in vitro antimicrobial, antibiofilm, and anticancer activities of new sulfanyl aminonaphthoquinone derivatives. Letters in Drug Design & Discovery 2017; 14 (6): 647-661. doi: 10.2174/157018081406170606155530
  • 43. Bayrak N, Tuyun AF, Yıldırım H, Onul N. Spectroscopic and structural aspects of the reactions of 1,4-quinones with sulfur and nitrogen nucleophiles. Comptes Rendus Chimie 2014; 17: 563-569. doi: 10.1016/j.crci.2013.10.022
  • 44. Ibis C, Tuyun AF, Ozsoy-Gunes Z, Bahar H, Stasevych MV et al. Synthesis and biological evaluation of novel nitrogen- and sulfurcontaining hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. European Journal of Medicinal Chemistry 2011; 46: 5861-5867. doi: 10.1016/j.ejmech.2011.09.048
  • 45. Deniz NG, Ibis C, Gokmen Z, Stasevych M, Novikov V et al. Design, synthesis, biological evaluation, and antioxidant and cytotoxic activity of heteroatom-substituted 1,4-Naphtho- and benzoquinones. Chemical and Pharmaceutical Bulletin 2015; 63: 1029-1039. doi: 10.1248/cpb.c15-00607
  • 46. Kacmaz A, Turker Acar E, Atun G, Kaya K, Diren Sigirci B et al. Synthesis, electrochemistry, DFT calculations, antimicrobial properties and X-ray crystal structures of some NH- and/or S- substituted-1,4-quinones. Chemistry Select 2018; 3: 8615-8623. doi: 10.1002/ slct.201801155
  • 47. Kacmaz A, Hamurcu Z. New NH-substituted 1,4-naphtho- and 1,4-benzo- quinones: synthesis, characterization and potential antiproliferative effect against MDAMB-231 cells. Phosphorus, Sulfur, and Silicon and Related Elements 2018; 193 (12): 831-839. doi: 10.1080/10426507.2018.1514503
  • 48. Kacmaz A, Deniz NG, Aydinli SG, Sayil C, Onay-Ucar E, Mertoglu E, Arda N. Synthesis and antiproliferative evaluation of some 1,4-naphthoquinone derivatives against human cervical cancer cells. Open Chemistry 2019; 17: 337-345. doi: 10.1515/chem-2019-0030
  • 49. Kacmaz A. Some new NH-, NH,S-, S,S- and NH,NH- substituted 1,4-naphtho(benzo)quinones. Phosphorus, Sulfur, and Silicon and Related Elements 2020; 195 (1): 43-49. doi: 10.1080/10426507.2019.1633534
  • 50. Ryu CK, Kim DH. The synthesis and antimicrobial activities of some 1,4-naphthoquinones (II). Archives of Pharmacal Research 1992; 15 (3): 263-268. doi: 10.1007/BF02974067
  • 51. Buckley D, Henbest HB, Slade P. Syntheses of substituted amino-, aminovinyl, and aminobutadienyl-p-quinones. Journal of the Chemical Society 1957; 4891-4900. doi: 10.1039/JR9570004891
  • 52. Tandon VK, Maurya HK. ‘On water’: unprecedented nucleophilic substitution and addition reactions with 1,4-quinones in aqueous suspension. Tetrahedron Letters 2009; 50: 5896-5902. doi: 10.1016/j.tetlet.2009.07.149
  • 53. Smith RE, Davis WR. Spectrophotometric determination of amines with p-chloranil. Analytical Chemistry 1984; 56 (13): 2345-2349. doi: 10.1021/ac00277a019
  • 54. Singh Gautam BP, Srivastava M, Prasad RL, Yadav RA. Synthesis, characterization and quantum chemical investigation of molecular structure and vibrational spectra of 2,5-dichloro-3,6-bis-(methylamino)1,4-benzoquinone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 129: 241-254. doi: 10.1016/j.saa.2014.02.082
  • 55. Cameron DW, Scott PM, Todd. Side-chain Amination: A new reaction of nuclear alkylated quinones. Journal of Chemical Society 1964; 42-48. doi: 10.1039/JR9640000042
  • 56. Cameron DW, Scott PM. Facile loss of C-methyl groups during the amination of quinones. Journal of Chemical Society 1964; 5569-5573. doi: 10.1039/JR9640005569
  • 57. Kumanotani J, Kagawa F, Hikosaka A, Sugita K. Ring-butylamination of toluquinone: isolation of products by TLC and an observation of their reaction course on the basis of molecular reactivity Index, Bulletin of the Chemical Society of Japan 1968; 41 (9): 2118-2123. doi: 10.1246/bcsj.41.2118
  • 58. Norcott P, Spielman C, McErlean CSP. An in-water, on-water domino process for synthesis. Green Chemistry 2012; 14: 605-609. doi: 10.1039/c2gc16259h
  • 59. Yogo M, Ito C, Furukawa H. Synthesis of some carbazolequinone alkaloids and their analogues. Facile palladium-assisted intramolecular ring closure of arylamino-1,4-benzoquinones to carbazole-1,4-quinones. Chemical and Pharmaceutical Bulletin 1991; 39 (2): 328-334. doi: 10.1248/cpb.39.328
  • 60. Yoshihira K, Sakaki S, Ogawa H, Natori S. Hydoxybenzoquinone from Myrsinaceae Plants IV. Further confirmation of structures of ardisiaquinones and some observations on alkylaminobenzoquinone derivatives. Chemical and Pharmaceutical Bulletin. 1968; 16 (12): 2383-2389. doi: 10.1248/cpb.16.2383