Amperometric urea biosensor based on immobilized urease on polypyrrole and macroporous polypyrrole modified Pt electrode

Amperometric urea biosensor based on immobilized urease on polypyrrole and macroporous polypyrrole modified Pt electrode

Biosensing of urea by a biosensor as a direct detection method at ambient temperature and pressureinstead of chromatography leads to a significant reduction in processing costs. Amperometric biosensors based onurease immobilization on macroporous polypyrrole (MPPy) and pyrrole on the surface of a Pt electrode were developed.Applying cyclic voltammetry (CV), we demonstrated the synthesis of MPPy using monodispersed polystyrene spheres(460 nm) as a template. CV and chronoamperometric studies were conducted to evaluate the electrochemical currentof the modified electrodes. For the electrode with polypyrrole (PPy), the biosensor response was linear in the range of1.67–8.32 mM (R2 = 0.99). Sensitivity, detection limit, and response time of this biosensor were 0.0035 mA mM −1,2.57 mM, and ∼7 s, respectively. For the electrode with MPPy, the linear range was 0.5–10.82 mM (R2 = 0.99). Forthis biosensor, sensitivity, detection limit (S/N = 3), and response time were 0.0432 mA mM −1, 0.208 mM, and ∼5 s,respectively. The modified biosensor with MPPy showed high stability and desirable selectivity for urea.

___

  • 1. Ibrahim AA, Ahmad R, Umar A, Al-Assiri M, Al-Salami A et al. Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea. Biosensors and Bioelectronics 2017; 98: 254-260. doi: 10.1016/j.bios.2017.06.015
  • 2. Jakhar S, Pundir C. Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor. Biosensors and Bioelectronics 2018; 100: 242-250. doi: 10.1016/j.bios.2017.09.005
  • 3. Lakard B, Magnin D, Deschaume O, Vanlancker G, Glinel K et al. Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited polyaniline. Biosensors and Bioelectronics 2011; 26 (10): 4139-4145. doi: 10.1016/j.bios.2011.04.009
  • 4. vel Krawczyk TK, Moszczyńska M, Trojanowicz M. Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor. Biosensors and Bioelectronics 2000; 15 (11-12): 681-691. doi: 10.1016/S0956- 5663(00)00085-3
  • 5. Ali A, Ansari AA, Kaushik A, Solanki PR, Barik A et al. Nanostructured zinc oxide film for urea sensor. Materials Letters 2009; 63 (28): 2473-2475. doi: 10.1016/j.matlet.2009.08.038
  • 6. Ahuja T, Kumar D, Singh N, Biradar A. Potentiometric urea biosensor based on multi-walled carbon nanotubes (MWCNTs)/silica composite material. Materials Science and Engineering: C 2011; 31 (2): 90-94. doi: 10.1016/j.msec.2010.08.001
  • 7. Bisht V, Takashima W, Kaneto K. An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials 2005; 26 (17): 3683-3690. doi: 10.1016/j.biomaterials.2004.09.024
  • 8. Koncki R, Lenarczuk T, Radomska A, Głąb S. Optical biosensors based on Prussian Blue films. Analyst 2001; 126 (7): 1080-1085. doi: 10.1039/B103044M
  • 9. Yang Z, Si S, Dai H, Zhang C. Piezoelectric urea biosensor based on immobilization of urease onto nanoporous alumina membranes. Biosensors and Bioelectronics 2007; 22 (12): 3283-3287. doi: 10.1016/j.bios.2007.03.006
  • 10. Brownlee BJ, Bahari M, Harb JN, Claussen JC, Iverson BD. Electrochemical glucose sensors enhanced by methyl viologen and vertically aligned carbon nanotube channels. ACS Applied Materials & Interfaces 2018; 10 (34): 28351-28360. doi: 10.1021/acsami.8b08997
  • 11. Çolak Ö, Arslan F. Amperometric biosensing of ethanol based on integration of alcohol dehydrogenase with a Pt/PPy-PVS/MB electrode. Turkish Journal of Chemistry 2015; 39 (1): 84-95. doi: 10.3906/kim-1405-44
  • 12. Kara P, Dağdeviren K, Özsöz M. An electrochemical DNA biosensor for the detection of DNA damage caused by radioactive iodine and technetium. Turkish Journal of Chemistry 2007; 31 (3): 243-249.
  • 13. Hao W, Das G, Yoon HH. Fabrication of an amperometric urea biosensor using urease and metal catalysts immobilized by a polyion complex. Journal of Electroanalytical Chemistry 2015; 747: 143-148. doi: 10.1016/j.jelechem. 2015.03.015
  • 14. Tyagi M, Tomar M, Gupta V. Glad assisted synthesis of NiO nanorods for realization of enzymatic reagentless urea biosensor. Biosensors and Bioelectronics 2014; 52: 196-201. doi: 10.1016/j.bios.2013.08.020
  • 15. Soares JC, Brisolari A, da Cruz Rodrigues V, Sanches EA, Gonçalves D. Amperometric urea biosensors based on the entrapment of urease in polypyrrole films. Reactive and Functional Polymers 2012; 72 (2): 148-152. doi: 10.4236/ojab.2013.21002
  • 16. Tyagi M, Tomar M, Gupta V. NiO nanoparticle-based urea biosensor. Biosensors and Bioelectronics 2013; 41: 110-115. doi: 10.1016/j.bios.2012.07.062
  • 17. Meibodi ASE, Haghjoo S. Amperometric urea biosensor based on covalently immobilized urease on an electrochemically polymerized film of polyaniline containing MWCNTs. Synthetic Metals 2014; 194: 1-6. doi: 10.1016/j.synthmet. 2014.04.009
  • 18. Carquigny S, Segut O, Lakard B, Lallemand F, Fievet P. Effect of electrolyte solvent on the morphology of polypyrrole films: application to the use of polypyrrole in pH sensors. Synthetic Metals 2008; 158 (11): 453-461. doi: 10.1016/j.synthmet.2008.03.010
  • 19. Cong HN, El Abbassi K, Gautier J, Chartier P. Oxygen reduction on oxide/polypyrrole composite electrodes: effect of doping anions. Electrochimica Acta 2005; 50 (6): 1369-1376. doi: 10.1016/j.electacta.2004.08.025
  • 20. Shanthala V, Shobha Devi S, Murugendrappa M. Synthesis, characterization and DC conductivity studies of polypyrrole/copper zinc iron oxide nanocomposites. Journal of Asian Ceramic Societies 2017; 5 (3): 227-234. doi: 10.1016/j.jascer.2017.02.005
  • 21. George PM, Lyckman AW, LaVan DA, Hegde A, Leung Y et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005; 26 (17): 3511-3519. doi: 10.1016/j.biomaterials.2004.09.037
  • 22. Stempien Z, Rybicki T, Rybicki E, Kozanecki M, Szynkowska M. In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synthetic Metals 2015; 202: 49-62. doi: 10.1016/j.synthmet.2015.01.027
  • 23. Li C, Sun C, Chen W, Pan L. Electrochemical thin film deposition of polypyrrole on different substrates. Surface and Coatings Technology 2005; 198 (1-3): 474-477. doi: 10.1016/j.surfcoat.2004.10.065
  • 24. Scott D, Cooney MJ, Liaw BY. Sustainable current generation from the ammonia–polypyrrole interaction. Journal of Materials Chemistry 2008; 18 (27): 3216-3222. doi: 10.1039/B800894A
  • 25. Vidotti M, Dall’Antonia LH, Cintra EP, de Torresi SIC. Reduction of interference signal of ascorbate and urate in poly (pyrrole)-based ammonia sensors in aqueous solutions. Electrochimica Acta 2004; 49 (22-23): 3665-3670. doi: 10.1016/j.electacta.2003.11.034
  • 26. Gustafsson G, Lundström I, Liedberg B, Wu C, Inganäs O et al. The interaction between ammonia and poly(pyrrole). Synthetic Metals 1989; 31 (2): 163-179. doi: 10.1016/0379-6779(89)90812-6
  • 27. Shul’ga A, Soldatkin A, El’skaya A, Dzyadevich S, Patskovsky S et al. Thin-film conductometric biosensors for glucose and urea determination. Biosensors and Bioelectronics, 1994; 9 (3): 217-223. doi: 10.1016/0956-5663(94)80124-X
  • 28. Gao M, Dai L, Wallace GG. Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis 2003; 15 (13): 1089-1094. doi: 10.1002/elan.200390131
  • 29. Massafera MP, de Torresi SIC. Urea amperometric biosensors based on nanostructured polypyrrole. Electroanalysis 2011; 23 (11): 2534-2540. doi: 10.1002/elan.201100239
  • 30. Ma C. The effect of Triton X-100 on the stability of polystyrene lattices. Colloids and Surfaces 1987; 28: 1-7. doi: 10.1016/0166-6622(87)80161-0
  • 31. Gonçales VR, Massafera MP, Benedetti TM, Moore DG, Torresi SI et al. Nanostructured thin films obtained by electrodeposition over a colloidal crystal template: applications in electrochemical devices. Journal of the Brazilian Chemical Society 2009; 20 (4): 663-673. doi: 10.1590/S0103-50532009000400010
  • 32. Okuda K, Urabe I, Yamada Y, Okada H. Reaction of glutaraldehyde with amino and thiol compounds. Journal of Fermentation and Bioengineering 1991; 71 (2): 100-105. doi: 10.1016/0922-338X(91)90231-5
  • 33. Tiwari A, Aryal S, Pilla S, Gong S. An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles. Talanta 2009; 78 (4-5): 1401-1407. doi: 10.1016/j.talanta.2009.02.038
  • 34. Kaushik A, Khan R, Solanki PR, Pandey P, Alam J et al. Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosensors and Bioelectronics 2008; 24 (4): 676-683. doi: 10.1016/j.bios.2008.06.032
  • 35. Zhang D, Yuwen HLX, Peng LJ. Parameters affecting the performance of immobilized enzyme. Journal of Chemistry 2013; 2013: 1-7. doi: 10.1155/2013/946248