Synthesis of Hofmann-type Zn(H2O)2Ni(CN)4 .nG (G = water and 1,4-dioxane) clathrates and the determination of their structural properties by various spectroscopic methods

Synthesis of Hofmann-type Zn(H2O)2Ni(CN)4 .nG (G = water and 1,4-dioxane) clathrates and the determination of their structural properties by various spectroscopic methods

Two new 2-dimensional cyanide-bridged coordination polymers [Zn(H2 O) 2 Ni(CN) 4 6(H2 O) and Zn(H2 O) 2Ni(CN) 4 3(C4 H8 O2)], which were similar to Hofmann-type clathrates, were synthesized based on [Ni(CN) 4 ]2− and Zn 2+ as building blocks. These substances were synthesized as compounds in crystalline form. Thes tructures of the crystalline compounds were characterized via their spectral analyses. General information about the structures of the newly obtained Hofmann-type clathrates was obtained from their vibration spectra by considering significant changes in the vibration peaks of the cyanide group, water ligand molecule, and guest molecules (water and 1,4-dioxane). The thermal behavior of the Hofmann-type clathrates was investigated in the range of 25–500 °C. In addition, experimental data on the magnetic properties of the Hofmann-type clathrates were obtained using the Gouy method under normal conditions. Information on the properties of the structures of the Hofmann clathrates was obtained by applying the single crystal diffraction technique. The asymmetric unit of the first Hofmann-type clathrate contained 1 Zn(II) ion, 1 Ni(II) ion, 1 cyanide ligand, 1 water ligand molecule, and 2 guest water molecules. The asymmetric unit of the second Hofmann-type clathrate contained 1 Zn(II) ion, 1 Ni(II) ion, 2 cyanide ligands, 1 water ligand molecule, and 2 half guest 1,4-dioxane molecules.

___

  • 1. Iwamoto T. Recent developments in the chemistry of Hofmann-type and the analogous clathrates. Journal of Molecular Structure 1981; 75: 51-65. doi: 10.1016/0022-2860(81)85150-2
  • 2. Iwamoto, T. The Hofmann-type and related inclusion compounds. In: Atwood JL, Davies JED, MacNicol DD (editors). Inclusion Compounds. London, UK: Academic Press, 1984, pp. 29-57.
  • 3. Iwamoto T. Inclusion compounds of multi-dimensional cyanometal complex host. In: Atwood JL, Davies JED, MacNicol DD (editors). Inclusion Compounds. Oxford, UK: Oxford University Press, 1991, pp. 177-212.
  • 4. Iwamoto T. Supramolecular chemistry in cyanometallate systems. In: Atwood, JL, Davies JED, MacNicol DD, Vogtle F (editors). Comprehensive Supramolecular Chemistry. Oxford, UK: Pergamon Press, 1996, pp. 643-690.
  • 5. Kartal Z. Vibrational spectroscopic investigation on some M(Benzonitrile) 2 Ni(CN) 4 complexes (M = Ni, Zn, Cd, and Hg). Brazilian Journal of Physics 2012; 42: 6-13. doi: 10.1007/s13538-011-0054-x
  • 6. Kartal Z, Yavuz A. The synthesis and the spectroscopic, thermal, and structural properties of the M2 [(fumarate)Ni(CN) 4 ].2(1,4-dioxane) clathrate (M = Co, Ni, Cd and Hg). Journal of Molecular Structure 2018; 1155: 171-183. doi: doi.org/10.1016/j.molstruc.2017.10.107
  • 7. Kartal Z, Şahin O, Yavuz A. The synthesis of two new Hofmann-type M(3-aminopyridine)2Ni(CN)4 [M = Zn(II) and Cd(II)] complexes and the characterization of their crystal structure by various spectroscopic methods. Journal of Molecular Structure 2018; 1171: 578-586. doi: 10.1016/j.molstruc.2018.06.042
  • 8. Endres H, Keller HJ, Lehmann R, Poveda A, Rupp HH et al. Linear chain bis(α,β -dionedioximato)metal compounds of the nickel triad: solid state design by molecular engineering. Zeitschrift für Naturforschung B 1977; 32 (B): 516-527. doi: 10.1515/znb-1977-0508
  • 9. Farrugia L, Evans C. Metal-metal bonding in bridged ligand systems: experimental and theoretical charge densities in Co-3(mu(3)-CX)(CO)(9) (X = H, Cl). Comptes Rendus Chimie 2005; 8: 1566-1583. doi: 10.1016/j.crci.2004.11.040
  • 10. Graham Solomons TW. Organic Chemistry. New York, NY, USA: Wiley, 1996.
  • 11. Budavari S. The Merck Index. Rahway, NJ, USA: Merck and Co., 1989.
  • 12. Fowles GW, Rice DA, Walton RA. The Raman spectra of metal halide complexes containing 1,4-dioxane. Spectrochimica Acta Part A: Molecular Spectroscopy 1970; 26A: 143-151. doi: 10.1016/0584-8539(70)80257-4
  • 13. Sheldrick GM. A short history of SHELX. Acta Crystallographica 2008; A64: 112-122. doi: 10.1107/S0108767307043930
  • 14. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallographica 2015; C71: 3-8. doi: 10.1107/S2053229614024218
  • 15. Bruker AXS Inc. Bruker APEX2 (Version 2014.11.0). Madison, WI, USA: Bruker AXS Inc., 2014.
  • 16. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, Patrick MC et al. Mercury CSD 2.0 – New features for the visualization and investigation of crystal structures. Journal of Applied Crystallography 2008; 41: 466-470. doi: 10.1107/S0021889807067908
  • 17. Farrugia LJ. WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography 2012; 45: 849-854. doi: 10.1107/S0021889812029111
  • 18. Praprotnik M, Janežič D, Mavri J. Temperature dependence of water vibrational spectrum: a molecular dynamics simulation study. Journal of Physical Chemistry A 2004; 108: 11056-11062. doi: doi.org/10.1021/jp046158d
  • 19. Carey DM, Korenowski GM. Measurement of the Raman spectrum of liquid water. Journal of Chemical Physics 1998; 108 (7): 2669-2675. doi: 10.1063/1.475659
  • 20. Zhang C, Khaliullin, RZ, Bovi D, Guidoni L, Ku¨hne TD. Vibrational signature of water molecules in asymmetric hydrogen bonding environments. Journal of Physical Chemistry Letters 2013; 4 (19): 3245-3250. doi: /10.1021/jz401321x
  • 21. Yuge H, Kim CH, Iwamoto T, Kitazawa T. Hofmann-H2 O-type and Hofmann-H2 O-Td-type host structures accomodating 1,4-dioxane: crystal structures of trans-bis (morpholine-N) cadmium(II) tetracyanonickelate(II), transdiaquacadmium(II) tetracyanonickelate(II)-(1,4-dioxane)(1/2) and trans-diaquacadmium(II) tetracyanocadmate(II) (1,4-dioxane)(1/2). Inorganica Chimica Acta 1997; 257: 217-224. doi: 10.1016/S0020-1693(96)05484-9
  • 22. Lu R, Chen Y, Zhou H, Yuan A. M(H2 O) 2 [Ni(CN) 4 ]•xH2 O. Acta Chimica Sinica 2010; 68 12: 1199-1204.
  • 23. Rodríguez-Hernández J, Lemus-Santana AA, Vargas CN, Regue E. Three structural modifications in the series of layered solids T(H2 O) 2 [Ni(CN) 4 ].xH2 O with T = Mn, Co, Ni: their nature and crystal structures. Comptes Rendus Chimie 2012; 15: 350-355. doi: 10.1016/j.crci.2011.11.004
  • 24. Alowasheeir A, Tominaka S, Ide Y, Yamauchi Y, Matsushita Y. Two-dimensional cyano-bridged coordination polymer of Mn(H2 O) 2 [Ni(CN) 4 ]: structural analysis and proton conductivity measurements upon dehydration and rehydration. Crystal Engineering Communications 2018; 20 (42): 6713-6720. doi: 10.1039/C8CE01400K
  • 25. Azhar A, Young C, Kaneti YV, Yamauchi Y, Badjah AY et al. Cyano-bridged Cu-Ni coordination polymer nanoflakes and their thermal conversion to mixed Cu-Ni oxides. Nanomaterials 2018; 8: 968. doi: 10.3390/nano8120968
  • 26. McCullough RL, Jones LH, Crosby GA. An analysis of the vibrational spectrum of the tetracyanonickelate(II) ion in a crystal lattice. Spectrochimica Acta 1960; 16 (8): 929-944. doi: 10.1016/0371-1951(60)80057-4
  • 27. Smékal Z, Císařová I, Mroziński J. Cyano-bridged bimetallic complexes of copper(II) with tetracyanonickelate(II). Crystal structure of [Cu(dpt)Ni(CN) 4 ]. Polyhedron 2001; 20: 3301-3306. doi: 10.1016/S0277-5387(01)00942-1
  • 28. Kürkçüoğlu GS, Karaağaç D, Yeşilel OZ, Taş M. Synthesis, spectroscopic and structural properties of heteropolynuclear cyano-bridged complexes. Journal of Inorganic and Organometallic Polymers and Materials 2012; 22: 324-331. doi: 10.1007/s10904-011-9612-5
  • 29. Ellestas OH, Klæboe P. The vibrational spectra of 1,4-dioxan-d 0 and 1,4-dioxan-d 8 . Spectrochimica Acta Part A Molecular Spectroscopy 1971; 27 (7): 1025-1048. doi: 10.1016/0584-8539(71)80186-1
  • 30. Shimanouchi T. Tables of molecular vibrational frequencies. Consolidated volume II. Journal of Physical and Chemical Reference Data 1977; 6 (3): 993-1102. doi: 10.1063/1.555560
  • 31. Dempster B, Uslu H. Infrared spectra and stability of Hofmann-type dioxane clathrates. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 1978; 34 (1): 71-75. doi: 10.1016/0584-8539(78)80188-3
  • 32. Kartal Z. IR spectroscopic study of M(benzoic acid) 2 Ni(CN) 4 •(1,4-dioxane) clathrate (M = Ni, Cd and Co). Zeitschrift für Naturforschung A 2005; 60 (A): 469-472. doi: 10.1515/zna-2005-0613
  • 33. Kartal Z, Türk T. FT-IR spectroscopic and thermal study of M(1,6-hexanedithiol)Ni(CN) 4 .2(1,4-dioxane) clathrate (M = Mn, Co, Ni and Cd). Journal of Molecular Structure 2012; 1014: 74-80. doi: 10.1016/j.molstruc.2012.01.031
  • 34. Zengin T, KantarcıZ, Kasap E. An infrared and Raman spectroscopic study on the Hofmann-Td -type 1,4-dioxane clathrates: M(NH3)2 M′ (CN) 4 •2C4 H8 O2 (M = Mn or Cd, M'= Hg; M = Cd, M'= Cd). Journal of Molecular Structure 1999; 482-483: 81-85. doi: 10.1016/S0022-2860(98)00839-4
  • 35. Kartal Z, Sayın E. FTIR spectroscopic and thermal study of M(Cyclohexanethiol) 2 Ni(CN) 4 .(1,4-dioxane) clathrate (M = Mn, Co, Ni and Cd). Journal of Molecular Structure 2011; 994: 170-178. doi: 10.1016/j.molstruc.2011.03.014
  • 36. Şenyel M, Parlak C, Alver Ö. FT-IR spectroscopic investigation of some Hofmann type complexes: M(1-phenylpiperazine) 2 Ni(CN) 4 (M = Ni, Co, Cd, Pd or Mn). Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 2008; 70 367-375. doi: 10.1016/j.saa.2007.10.024
  • 37. Yılmaz VT, Karadağ A. Thermal decomposition of Hofmann-type complexes of di- and triethanolamine. Thermochimica Acta 2000; 348 (1): 121-127. doi: 10.1016/S0040-6031(00)00348-8
  • 38. Nishikiori S, Takahashi A, Ratcliffe CI, Ripmeester JA. X-ray and 2 H NMR studies of structure and dynamics in the Hofmann-type and the Hofmann-(en)-type pyrrole clathrates. Journal of Supramolecular Chemistry 2 2002; 483-496. doi: 10.1016/S1472-7862(03)00067-4
  • 39. Parlak C, Alver Ö, Şenyel M. Vibrational spectroscopic study on some Hofmann type clathrates: M(1-Phenylpiperazine) 2 Ni(CN) 4 .2G (M = Ni, Co and Cd; G = aniline). Journal of Molecular Structure 2009; 919: 41-46. doi: 10.1016/j.molstruc.2008.08.005