The role of diazacrown ether in the enhancement of the biological activity of silver nanoparticles

The role of diazacrown ether in the enhancement of the biological activity of silver nanoparticles

The nanostructuring of hydroxyl-substituted diazacrown-ether (DC) by silver nanoparticles was obtainedby green synthesis method in order to increase the antibacterial activity of silver nanoparticles. The synthesized DC, nanoparticles, and nanosupramolecular complex (Ag@DC) were studied by TEM, powder-XRD, and NMR, IR, and UV spectroscopy methods. The Ag@DC nanostructures were uniform and their sizes ranged from 8 to 18 nm. IR and UV spectra revealed the noncovalent formation of the nanosupramolecular complex. The antibacterial activities of the prepared active agents were investigated on gram-positive and gram-negative bacteria by twofold microdilution method. Ultrastructural study by TEM was performed on E. coli BDU12 after treatment with Ag@DC. The results showed the improvement of the antibacterial action of Ag@DC compared to silver nanoparticles (E. coli BDU12 – 32 times, A. baumannii BDU32 – 16 times, K. pneumoniae BDU44 and P. aeruginosa BDU49 – 4 times, S. aureus BDU23 – 512 times). Chelating by DC significantly improved the antibacterial effects of the silver nanoparticles on gram-positive and gram-negative bacteria due to the ionophoric behavior of the crown ethers.

___

  • 1. Alshehri AH, Jakubowska M, Młozÿniak A, Horaczek M, Rudka D et al. Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Applied Materials & Interfaces 2012; 4 (12): 7007-7010. doi: 10.1021/am3022569
  • 2. Ouyang Z, Li J, Wang J, Li Q, Ni T et al. Fabrication, characterization and sensor application of electrospun polyurethane nanofibers filled with carbon nanotubes and silver nanoparticles. Journal of Materials Chemistry B 2013; 1 (18): 2415-2424. doi: 10.1039/c3tb20316f
  • 3. Gharibshahi L, Saion E, Gharibshahi E, Shaari AH, Matori KA. Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials 2017; 10 (4): 1-13. doi: 10.3390/ma10040402
  • 4. Warrier P, Teja A. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Research Letters 2011; 6 (1): 247-252. doi: 10.1186/1556-276X-6-247
  • 5. Patil RS, Kokate MR, Jambhale CL, Pawar SM, Han SH et al. One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application. Advances in Natural Sciences: Nanoscience and Nanotechnology 2012; 3 (1): 1-7. doi: 10.1088/2043-6262/3/1/015013
  • 6. Behera S, Nayak PL. Green synthesis and characterization of zero valent silver nanoparticles from the extract of Vitis vinifera. World Journal of Nano Science & Technology 2013; 2: 58-61. doi: 10.5829/idosi.wjnst.2013.2.1.211310
  • 7. Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MN. Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. International Journal of Environmental Research and Public Health 2012; 9 (1): 244-271. doi: 10.3390/ijerph9010244
  • 8. Andrade PF, De Faria AF, Oliveira SR, Arruda MAZ, Do Carmo GM. Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Research 2015; 81: 333-342. doi: 10.1016/j.watres.2015.05.006
  • 9. Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MN. Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. International Journal of Environmental Research and Public Health 2012; 9 (1): 244-271. doi: 10.3390/ijerph9010244
  • 10. Ren X, Meng X, Chen D, Tang F, Jiao J. Using silver nanoparticle to enhance current response of biosensor. Biosensors and Bioelectronics 2004; 21 (3): 433-437. doi: 10.1016/j.bios.2004.08.052
  • 11. Sotiriou GA, Pratsinis SE. Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Current Opinion in Chemical Engineering 2011; 1 (1): 3-10. doi: 10.1016/j.coche.2011.07.001
  • 12. Pallaoro A, Hoonejani MR, Braun GB, Meinhart C, Moskovits M. Combined SERS biotags (SBTs) and microfluidic platform for the quantitative ratiometric discrimination between noncancerous and cancerous cells in flow. Biosensing and Nanomedicine V 2012; 8460: 1-8. doi: 10.1117/12.930405
  • 13. Ge L, Li Q, Wang M, Ouyang J, Li X et al. Nanosilver particles in medical applications: synthesis, performance, and toxicity. International Journal of Nanomedicine 2014; 9: 2399-2407. doi: 10.2147/IJN.S55015
  • 14. Chrisnasari R, Wijaya AL, Purwanto MGM. Development of DNA biosensor based on silver nanoparticles UV-Vis absorption spectra for Escherichia coli detection. KnE Life Sciences 2015; 2: 382-389. doi: 10.18502/kls.v2i1.180
  • 15. Pallaoro A, Braun G B, Moskovits M. Biotags based on surface-enhanced raman can be as bright as fluorescence tags. Nano Letters 2015; 15 (10): 6745-6750. doi: 10.1021/acs.nanolett.5b02594
  • 16. Li Z, Zhang Y, Ye J, Guo M, Chen J et al. Nonenzymatic glucose biosensors based on silver nanoparticles deposited on TiO2 nanotubes. Journal of Nanotechnology 2016; 2016: 1-7. doi: 10.1155/2016/9454830
  • 17. Niska K, Knap N, Kędzia A, Jaskiewicz M., Kamysz W et al. Capping agent-dependent toxicity and antimicrobial activity of silver nanoparticles: an in vitro study. Concerns about potential application in dental practice. International Journal of Medical Sciences 2016; 13 (10): 772-782. doi: 10.7150/ijms.16011
  • 18. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters 2012; 12 (8): 4271-4275. doi: 10.1021/nl301934w
  • 19. Abramenko N, Demidova TB, Krutyakov YA, Zherebin PM, Krysanov EY et al. The effect of capping agents on the toxicity of silver nanoparticles to Danio rerio embryos. Nanotoxicology 2019; 13 (1): 1-3. doi: 10.1080/17435390.2018.1498931
  • 20. Hasanova U, Ramazanov M, Maharramov A, Gakhramanova Z, Hajiyeva S et al. Synthesis of macrocycle (MC) - mimics the properties of natural siderophores and preparation the nanostructures on the basis of MC and magnetite nanoparticles. Chemical Engineering Transactions 2016; 47: 109-114. doi: 10.3303/CET1647019
  • 21. Hasanova UA, Ramazanov MA, Maharramov AM, Gakhramanova Z, Hajiyeva SF et al. The functionalization of magnetite nanoparticles by hydroxyl substituted diazacrown ether, able to mimic natural siderophores, and investigation of their antimicrobial activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2016; 86 (1-2): 19-25. doi: 10.1007/s10847-016-0636-x
  • 22. Kumar B, Smita K, Cumbal L, Debut A, Pathak RN. Sonochemical synthesis of silver nanoparticles using starch: a comparison. Bioinorganic Chemistry and Applications 2014; 2014: 1-8. doi: 10.1155/2014/784268
  • 23. Martin A, Takiff H, Vandamme P, Swings J, Palomino JC et al. A new rapid and simple colorimetric method to detect pyrazinamide resistance in Mycobacterium tuberculosis using nicotinamide. Journal of Antimicrobial Chemotherapy 2006; 58 (2): 327-331. doi: 10.1093/jac/dkl231
  • 24. Israyilova A, Buroni S, Forneris F, Scoffone VC, Shixaliyev NQ et al. Biochemical characterization of glutamate racemase, a new candidate drug target against Burkholderia cenocepacia infections. PLoS One 2016; 11 (11): e0167350. doi: 10.1371/journal.pone.0167350
  • 25. Asadov ZH, Nasibova SM, Rahimov RA, Gasimov EK, Muradova SA et al. Effects of head group on the properties of cationic surfactants containing hydroxyethyl-and hydroxyisopropyl fragments. Journal of Molecular Liquids 2019; 274: 125-132. doi: 10.1016/j.molliq.2018.10.100