Surface modification of polyvinyl chloride by polyacrylic acid graft as a polyelectrolyte membrane using Ar plasma

Surface modification of polyvinyl chloride by polyacrylic acid graft as a polyelectrolyte membrane using Ar plasma

This work reports the synthesis and properties of a new membrane based on polyvinyl chloride (PVC)grafting with polyacrylic acid (PAA) using argon (Ar) plasma. The membranes of PVC were synthesized by solutioncasting method, where PAA was deposited as an ultrathin film onto PVC using dielectric barrier discharge at atmospheric pressure with Ar gas. The surface characteristics and chemical composition of the modified membranes were analyzed by water contact angle, scanning electron microscopy, and Fourier transform infrared spectroscopy. Moreover, the electrochemical properties of the membrane were investigated via ion exchange capacity for the purpose of using it as a polyelectrolyte membrane.

___

  • 1. Barbir F, Gomez T. Efficiency and economics of proton exchange membrane (PEM) fuel cells. International Journal of Hydrogen Energy 1997; 22: 1027-1037.
  • 2. Smith S, Sridhar B. Solid polymer electrolyte membranes for fuel cell applications—a review. Journal of Membrane Science 2005; 259: 10-26.
  • 3. Chan CM, Ko TM, Hiraoka H. Polymer surface modification by plasmas and photons. Surface Science Reports 1996; 24: 1-54
  • 4. Andújar JM, Segura F. Fuel cells: history and updating. A walk along two centuries. Renewable and Sustainable Energy Reviews 2009; 13: 2309-2322.
  • 5. Adipurnam I, Yang MC, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomaterials Science 2017; 5: 22-37.
  • 6. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England Journal of Medicine 1994; 331: 889-895.
  • 7. Ha JW, Park S. Micro-porous patterning of the surface of a polymer electrolyte membrane by an accelerated plasma and its performance for direct methanol fuel cells. Macromolecular Research 2017; 25: 1-4.
  • 8. Kou RQ, Xu ZK, Deng HT, Liu ZM, Seta P et al. Surface modification microporous polypropylene membranes by plasma-induced graft polymerization of α-allyl glucoside. Langmuir 2003; 19: 6869-6875.
  • 9. Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol-gel processing. Journal of Applied Biomaterials 1991; 2: 231-239.
  • 10. Liu F, Hashim A, Liu Y, Moghareh AMR, Li K. Progress in the production and modification of PVDF membranes. Journal of Membrane Science 2011; 375: 1-27.
  • 11. Mulder J. Basic Principles of Membrane Technology. New York, NY, USA: Springer Science & Business Media, 2012.
  • 12. Petersen RJ. Composite reverse osmosis and nanofiltration membranes. Journal of Membrane Science 1993; 83: 81-150.
  • 13. Recek N, Resnik M, Motaln H, Lah-Turnšek T, Augustine R et al. Cell adhesion on polycaprolactone modified by plasma treatment. International Journal of Polymer Science 2016; 2016: 1-9.
  • 14. d’Agostino R, Favia P. Plasma Processing of Polymers. New York, NY, USA: Springer Science & Business Media, 1997.
  • 15. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports 2016; 630: 1-84.
  • 16. Scheltjens G, Ponte DG, Paulussen S, Graeve DI, Terryn H et al. Thermal properties of plasma deposited methyl methacrylate films in an atmospheric DBD reactor. Plasma Process and Polymers 2015; 12: 260-270.
  • 17. Shukla PK, Mamun A. Introduction to Dusty Plasma Physics. 1st ed. Boca Raton, FL, USA: CRC Press, 2001.
  • 18. Tendero C, Tixiera C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: a review. Spectrochimica Acta B 2006; 61: 2-30.
  • 19. Mai-Prochnow A, Murphy BA, McLean MK, Kong GM, Ostrikov K. Atmospheric pressure plasmas: infection control and bacterial responses. International Journal of Antimicrobial Agents 2014; 43: 508-517.
  • 20. Fridman A. Plasma Chemistry. Cambridge, UK: Cambridge University Press, 2008.
  • 21. Pelaz B, Pino P, Maffre P, Hartmann R, Gallego M et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 2015; 9: 6996-7008.
  • 22. Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Research Letters 2008; 3: 397.
  • 23. Moro, T, Takatori Y, Ishihara K, Konno T, Takigawa Y et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nature Materials 2004; 3: 829.
  • 24. Athawale VD, Lele V. Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydrate Polymers 1998; 35: 21-27.
  • 25. Gürdağ G, Yaşar M, Gürkaynak MA. Graft copolymerization of acrylic acid on cellulose: reaction kinetics of copolymerization. Journal of Applied Polymer Science 1997; 66: 929-934.
  • 26. Huacai G, Pang W, Luo D. Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydrate Polymers 2006; 66: 372-378.
  • 27. Abu-Saied M, Fahmy A, Morgan N, Qutop W, Abdelbary H et al. Enhancement of poly (vinyl chloride) electrolyte membrane by its exposure to an atmospheric dielectric barrier discharge followed by grafting with polyacrylic acid. Plasma Chemistry and Plasma Processing 2019; 39: 1499-1517.
  • 28. Fahmy A, Mix R, Schönhals A, Friedrich J. Surface and bulk structure of thin spin coated and plasma-polymerized polystyrene films. Plasma Chemistry and Plasma Processing 2012; 32:767-780.
  • 29. Fahmy A, Mix R, Schönhals A, Friedrich J. Structure of plasma-deposited copolymer films prepared from acrylic acid and styrene: Part II variation of the comonomer ratio. Plasma Processes and Polymers 2013; 10: 750-760.
  • 30. Del Fanti NA. Infrared Spectroscopy of Polymer. Waltham, MA, USA: Thermo Fisher Scientific Inc., 2008.
  • 31. Fahmy A, Schönhals A. Reaction of CO2 gas with (radicals in) plasma-polymerized acrylic acid (and formation of COOH-rich polymer layers). Plasma Processes and Polymers 2016; 13: 499-508.
  • 32. Fahmy A, Elzaref A, Youssef H, Shehata H, Wassel M et al. Plasma O2 modifies the structure of synthetic zeolite-A to improve the removal of cadmium ions from aqueous solutions. Turkish Journal of Chemistry 2019; 43: 172-184.
  • 33. Villegas M, Romero AI, Parentis ML, Vidaurren CEF, Gottifredi JC. Acrylic acid plasma polymerized poly (3- hydroxybutyrate) membranes for methanol/MTBE separation by pervaporation. Chemical Engineering Research and Design 2016; 109: 234-248.
  • 34. Nguyen TT, Matsuura H, Matsui Y, Takemura Y. Effect of alcohol addition on properties of argon atmospheric nonthermal plasma jet. Plasma Research Express 2019; 1: 015009.
  • 35. Fahmy A, Debarnot D, Friedrich J. Influence of water addition on the structure of plasma-deposited allyl alcohol polymer films. Journal of Adhesion Science and Technology 2015; 29: 965-980.
  • 36. Fahmy A, Mix R, Schönhals A. Friedrich J. Structure of plasma deposited poly (acrylic acid) films. Plasma Processes and Polymers 2011; 8: 147-159.
  • 37. Gupta B, Plummer C, Bisson I, Frey P, Hilborn J. Plasma-induced graft polymerization of acrylic acid onto poly (ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials 2002; 23: 863-871.
  • 38. Takei YG, Aoki T, Sanui K, Ogata N, Sakurai Y et al. Dynamic contact angle measurement of temperatureresponsive surface properties for poly (N-isopropylacrylamide) grafted surfaces. Macromolecules 1994; 27: 6163- 6166.
  • 39. Xu Z, Wang J, Shen L, Men D, Xu Y. Microporous polypropylene hollow fiber membrane: Part I. Surface modification by the graft polymerization of acrylic acid. Journal of Membrane Science 2002; 196: 221-229.
  • 40. Mohanapriya S, Bhat SD, Sahu AK, Manokaran A, Vijayakumar R et al. Sodium alginate based proton exchange membranes as electrolytes for DMFCs. Energy & Environmental Science 2010; 3: 1746-1756.
  • 41. Smitha B, Sridhar S, Khan AA. Polyelectrolyte complexes of chitosan and poly (acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 2004; 37: 2233-2239.
  • 42. Woo Y, Oh YO, Kang YS, Jung B. Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. Journal of Membrane Science 2003; 220: 31-45.
  • 43. Zainoodin AM, Kamarudin SK, Masdar MS, Daud WRW, Mohamad AB et al. High power direct methanol fuel cell with a porous carbon nanofiber anode layer. Applied Energy 2014; 113: 946-954.
  • 44. Abu-Saied MA, Fontananova E, Drioli E, Mohy Eldin MS. Sulphonated poly (glycidyl methacrylate) grafted cellophane membranes: novel application in polyelectrolyte membrane fuel cell (PEMFC). Journal of Polymer Research 2013; 20: 187-199.
  • 45. Xu Z, Wang J, Shen L, Men D, Xu Y. Fundamental studies on a new series of anion exchange membranes: effect of simultaneous amination-crosslinking processes on membranes ion-exchange capacity and dimensional stability. Journal of Membrane Science 2002; 199: 203-210.
  • 46. Kamoun AE, Youssef ME, Abu-Saied MA, Fahmy A, Khalil HF et al. Ion conducting nanocomposite membranes based on PVA-HA-HAP for fuel cell application: II. effect of modifier agent of PVA on membrane properties. International Journal of Electrochemical Science 2015; 10: 6627-6644.