Synthesis and characterization of hexagonal boron nitride used for comparison of removal of anionic and cationic hazardous azo-dye: kinetics and equilibrium studies

Synthesis and characterization of hexagonal boron nitride used for comparison of removal of anionic and cationic hazardous azo-dye: kinetics and equilibrium studies

The purpose of this study was to compare the adsorption behavior of cationic and anionic dyes onto a hexagonal boron nitride (hBN) nanostructure that was rich in a negative charge. Herein, the hBN nanostructure was synthesized using boric acid as a precursor material. The characteristic peaks of the hBN nanostructure were performed using Fourier transform infrared (FT-IR) and Raman spectroscopies. The morphology and the particle size of hBN nanostructure were determined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). During the studies, various essential adsorption parameters were investigated, such as the initial dye concentration, pH of the dye solution, adsorbent dose, and contact time. Under optimal conditions, the removal of 42.6% Metanil yellow (MY) and 90% Victoria blue B (VBB) from aqueous solution was performed using a 10-mg hBN nanostructure. Furthermore, the equilibrium studies showed that the Freundlich isotherm model fitted well for the removal of MY. However, the Langmuir isotherm model fitted well for the removal of VBB. Moreover, according to the results obtained from the kinetic studies, while the first-order kinetic model was suited for the adsorption of the MY, the second-order kinetic model was found to well fit for the adsorption of VBB.

___

  • 1. Farhadi S, Manteghi F, Tondfekr R. Removal of Congo red by two new zirconium metal-organic frame works: kinetics and isotherm study. Monatshefte für Chemie –Chemical Monthly 2019; 150: 193-205. doi: 10.1007/s00706-018-2329-1
  • 2. Parmentier K, Vercammen S, Soetaert S, Schellemans C. Carbon dioxide poisoning: a literature review of an often forgotten cause of intoxication in the emergency department. International Journal of Emergency Medicine 2017; 10: 14. doi: 10.1186/s12245-017-0142-y
  • 3. Yuliarto B, Gumilar G, Septiani NLW. SnO2 nanostructure as pollutant gas sensors: synthesis, sensing performances, and mechanism. Advances in Materials Science and Engineering 2015; 94823: 14. doi: 10.1155/2015/694823
  • 4. Koli PB, Kapadnis KH, Deshpande UG. Nanocrystalline-modified nickel ferrite films: an effective sensor for industrial and environmental gas pollutant detection. Journal of Nanostructure in Chemistry 2019; 9: 95-110. doi: 10.1007/s40097-019-0300-2
  • 5. Koli PB, Kapadnis KH, Deshpande UG. Transition metal decorated Ferrosoferric oxide (Fe3O4): an expeditious catalyst for photo degradation of Carbol Fuchsinin environmental remediation. Journal of Environmental Chemical Engineering 2019; 7: 103373. doi: 10.1016/j.jece.2019.103373
  • 6. Yesilada O, Asma D, Cing S. Decolorization of textile dyes by fungal pellets. Process Biochemistry 2003; 38: 933-938. doi: 10.1016/S0032- 9592(02)00197-8
  • 7. Chen S, Zhang J, Zhang C, Yue Q, Li Y et al. Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination 2010; 252: 149-156. doi: 10.1016/j.desal.2009.10.010
  • 8. Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology 2001; 77: 247-255. doi: 10.1016/S0960-8524(00)00080-8
  • 9. Gomaa OM, Linz J, Reddy CA. Decolorization of Victoria blue by the white rot fungus, Phanerochaete chrysosporium. World Journal of Microbiology and Biotechnology 2008; 24: 2349-2356. doi: 10.1007/s11274-008-9750-2
  • 10. Toh YC, Yen JJL, Obbard JP, Ting YP. Decolourisation of azo dyes by white-rot fungi (WRF) isolated in ingapore. Enzyme and Microbial Technology 2003; 33: 569-575. doi: 10.1016/S0141-0229(03)00177-7
  • 11. Demirbas O, Alkan M, Dogan M. The removal of Victoria blue from aqueous solution by adsorption on a low-cost material. Adsorption 2002; 8: 341-349. doi: 10.1023/A:1021589514766
  • 12. Kumar M, Tamilarasan R. Removal of Victoria blue using Prosopis juliflora bark carbon: kinetics and thermodynamic modeling studies. Journal of Materials and Environmental Science 2014; 5 (2): 510-519.
  • 13. Giles CH, Mckay RB. Adsorption of cationic (basic) dyes by fixed yeast Cells. Journal of Bacteriology 1965; 89: 390-397.
  • 14. Wadwa K, Smith S, Oseroff AR. Cationic triarylmethane photosensitizers for selective photochemotherapy: Victoria blue-Bo, Victoria blue-R and Malachite green. Advances in Photochemotherapy 1988; 997: 154. doi: 10.1117/12.960199
  • 15. Mittal A, Gupta VK, Malviya A, Mittal J. Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (Bottom Ash and De-Oiled Soya). Journal of Hazardous Materials 2008; 151: 821-832. doi: 10.1016/j.jhazmat.2007.06.059.
  • 16. Anjaneya O, Souch, SY, Santoshkumar M, Karegoudar TB. Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. Journal of Hazardous Materials 2011; 190: 351-358. doi: 10.1016/j. jhazmat.2011.03.044
  • 17. Xiaoyao G, Qin W, Bin D, Yakun Z, Xiaodong X et al. Removal of Metanil Yellow from water environment by amino functionalized graphenes (NH2-G)—Influence of surface chemistry of NH2-G. Applied Surface Science 2013; 284: 862-869. doi: 10.1016/j.apsusc.2013.08.023
  • 18. Tural S, Tarhan T, Tural B. Removal of hazardous azo dye Metanil Yellow from aqueous solution by cross-linked magnetic biosorbent; equilibrium and kinetic studies. Desalination and Water Treatment 2015; 57: 13347-13356. doi: 10.1080/19443994.2015.1056842
  • 19. Liu XT, Wang MS, Zhang SJ, Pan BC. Application potential of carbon nanotubes in water treatment: a review. Journal of Environmental Sciences 2013; 25: 1263-1280. doi: 10.1016/S1001-0742(12)60161-2
  • 20. Kannan C, Muthuraja K, Devi MR. Hazardous dyes removal from aqueous solution over mesoporous aluminophosphate with textural porosity by adsorption. Journal of Hazardous Materials 2013; 15: 244-245. doi: 10.1016/j.jhazmat.2012.11.016
  • 21. Liang HW, Cao X, Zhang WJ, Lin HT, Zhou F. Robust and highly efficient free-standing carbonaceous nanofiber membranes for water purification. Advanced Functional Materials 2011; 21: 3851-3858. doi: 10.1002/adfm.201100983
  • 22. Wu RC, Qu JH, Chen YS. Magnetic powder MnO-Fe2O3 composite-a novel material for the removal of azo-dye from water. Water Research 2005; 39: 630-638. doi: 10.1016/j.watres.2004.11.005
  • 23. Chang CW, Okawa D, Majumdar A, Zettl A. Solid-state thermal rectifier. Science 2006; 314 (5802): 1121-1124. doi: 10.1126/science.1132898
  • 24. Golberg D, Costa P, Lourie O, Mitome M, Bai XD et al. Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Letters 2007; 7: 2146- 2151. doi: 10.1021/nl070863r
  • 25. Chen Y, Zou J, Campbell SJ, Caer GL. Boron nitride nanotubes: pronounced resistance to oxidation. Applied Physics Letters 2004; 84: 2430. doi: 10.1063/1.1667278
  • 26. Zhao G, Zhang F, Wu Y, Hao X, Wang Z et al. One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance. Advanced Optical Materials 2016; 4: 141-146. doi: 10.1002/adom.201500415
  • 27. Li J, He S, Li R, Dai W, Tao J et al. Template free synthesis of three dimensional boron nitride nanosheets for efficient water cleaning. RSC Advances 2018; 8: 32886-32892. doi: 10.1039/C8RA06445H
  • 28. Zeng H, Zhi C, Zhang Z, Wei X, Wang X et al. “White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Letters 2010; 10: 5049-5055. doi: 10.1021/nl103251m
  • 29. Li J, Luo H, Lin J, Xue Y, Liu Z et al. Low-temperature collapsing boron nitride nanospheres into nanoflakes and their photoluminescence properties. Materials Research Express 2014; 1: 035035. doi: 10.1088/2053-1591/1/3/035035
  • 30. Zhi CY, Bando Y, Tang CC, Kuwahara H, Golberg D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Advanced Materials 2009; 21: 2889-2893. doi: 10.1002/adma.200900323
  • 31. Li J, Xiao X, Xu X, Lin J, Huang Y et al. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants. Scientific Reports 2013; 3: 3208. doi: 10.1038/srep03208
  • 32. Lei W, Portehault D, Liu D, Qin S, Chen Y. Porous boron nitride nanosheets for effective water cleaning. Nature Communications 2013; 4: 1777. doi: 10.1038/ncomms2818
  • 33. Song Q, Fang Y, Liu Z, Li L, Wang Y et al. The performance of porous hexagonal BN in high adsorption capacity towards antibiotics pollutants from aqueous solution. Chemical Engineering Journal 2017; 325: 71-79. doi: 10.1016/j.cej.2017.05.057
  • 34. Liu Z, Fang Y, Jia H, Wang C, Song Q et al. Novel multifunctional cheese-like 3D carbon-BN as a highly efficient adsorbent for water purification. Scientific Reports 2018; 8: 1104. doi: 10.1038/s41598-018-19541-5
  • 35. Sen Ö, Emanet M, Çulha M. One-step synthesis of hexagonal boron nitrides, their crystallinity and biodegradation. Frontiers in Bioengineering and Biotechnology 2018; 6: 83. doi: 10.3389/fbioe.2018.00083
  • 36. Kant A, Datta M. Adsorption characteristics of victoria blue on low cost natural sand and its removal from aqueous media. European Chemical Bulletin 2014; 3: 752-759. doi: 10.17628/ecb.2014.3.752-759
  • 37. Shen T, Liu S, Yan W, Wang J. Highly efficient preparation of hexagonal boron nitride by direct microwave heating for dye removal. Journal of Materials Science 2019; 54: 8852-8859. doi: 10.1007/s10853-019-03514-8
  • 38. Singla P, Goel N, Kumar V, Singhal S. Boron nitride nanomaterials with different morphologies: synthesis, characterization and efficient application in dye adsorption. Ceramics International 2015; 41 (9): 10565-10577. doi: 10.1016/j. ceramint.2015.04.151
  • 39. Mahdizadeh A, Farhadi S, Zabardast A. Microwave-assisted rapid synthesis of graphene-analogue hexagonal boron nitride (h-BN) nanosheets and their application for the ultrafast and selective adsorption of cationic dyes from aqueous solutions. RSC Advances 2017; 7: 53984-53995. doi: 10.1039/C7RA11248C
  • 40. Zhang X, Lian G, Zhang S, Cui D, Wang Q. Boron nitride nanocarpets: controllable synthesis and their adsorption performance to organic pollutants. CrystEngComm 2012; 14: 4670-4676. doi: 10.1039/C2CE06748J
  • 41. Crimp MJD, Oppermann A, Krehbiel K. Suspension properties of hexagonal BN powders: effect of pH and oxygen content. Journal of Materials Science 1999; 34: 2621-2625. doi: 10.1023/A:1004656817379
  • 42. Joni IM, Balgis R, Ogi T, Iwaki T, Okuyama K. Surface functionalization for dispersing and stabilizing hexagonal boron nitride nanoparticle by bead milling. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011; 388: 49-58. doi: 10.1016/j.colsurfa.2011.08.007
  • 43. Lei W, Mochalin VN, Liu D, Qin S, Gogotsi Y et al. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nature Communications 2015; 6 (1): 8849. doi: 10.1038/ncomms9849
  • 44. Alkan M, Dogan M, Turhan Y, Demirbas O, Turan P. Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions. Chemical Engineering Journal 2008; 139: 213-223. doi: 10.1016/j.cej.2007.07.080
  • 45. Goldberg S. Equations and models describing adsorption processes in soils. In: Tabatabai MA, Sparks DL (editors). Chemical processes in soils. Soil Science Society of America (SSSA) Book Series 8. Madison ,WI, USA: SSSA, 2005, pp. 489-517.
  • 46. Mohan S, Karthikeyan J. Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environmental Pollution 1997; 97: 183-187. doi: 10.1016/S0269-7491(97)00025-0
  • 47. Lelifajri, Nawi MA, Sabar S, Supriatno, Nawawi WI. Preparation of immobilized activated carbon-polyvinyl alcohol composite for the adsorptive removal of 2,4-dichlorophenoxyacetic acid. Journal of Water Process Engineering 2018; 25: 269-277. doi: 10.1016/j. jwpe.2018.08.012
  • 48. Cazetta AL, Vargas AMM, Nogami EM, Kunita MH, Guilherme MR et al. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal 2011; 174: 117-125. doi: 10.1016/j.cej.2011.08.058
  • 49. Weber TW, Chakravorti RK. Pore and solid diffusion models for fixed-bed adsorbers. AlChE Journal 1974; 20: 228-238. doi: 10.1002/ aic.690200204
  • 50. Lagergren S. About the theory of so-called adsorption of soluble substance. Kungliga Svenska Vetenskapsakademiens Handlingar 1898; 24: 1-39.
  • 51. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry 1999; 34: 451-465. doi: 10.1016/S0032- 9592(98)00112-5
  • 52. Chiou MS, Chuang GS. Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads. Chemosphere 2006; 62: 731-740. doi: 10.1016/j.chemosphere.2005.04.068
  • 53. Shen T, Liu S, Yan W, Wang J. Highly efficient preparation of hexagonal boron nitride by direct microwave heating for dye removal. Journal of Materials Science 2019; 54: 8852-8859. doi: 10.1007/s10853-019-03514-8.