Catalytic activity of novel thermoplastic/cellulose-Au nanocomposites prepared by cryomilling

Catalytic activity of novel thermoplastic/cellulose-Au nanocomposites prepared by cryomilling

Due to environmental concerns, increasing attention has been focused on the application and preparation of biobased polymers and their blends. In this study, cellulose, the most spread biopolymer on Earth, was used in the preparation of novel cotton/polypropyleneAu and cotton/polyethylene-Au nanocomposites via a green mechanochemical approach. First, mechanoradicals were generated by ball milling of the cotton and thermoplastics under cryo conditions, and then, these radicals were used in the reduction of Au ions to Au nanoparticles (Au NPs). Nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The application of mechanochemistry in obtaining the cotton/thermoplastic blends allowed homogenous and fine blending of the samples and in addition, excluded the usage of toxic solvents. Since Au NPs exhibit a wide range of applications, e.g., in catalysis, cotton/thermoplastic-Au nanocomposites were used to catalyze the reduction reaction of 4-nitrophenol to 4-aminophenol, followed by UV-Vis spectroscopy. Finally, the hydrophobicity of the nanocomposites was alternated by tuning the blend composition. In the prepared nanocomposites, cotton and thermoplastics acted as very good supporting matrices for the Au NPs and provided satisfactory access to the NPs.

___

  • 1. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 2011; 40 (7): 3941-3994. doi: 10.1039/C0CS00108B
  • 2. O’sullivan AC. Cellulose: the structure slowly unravels. Cellulose 1997; 4 (3): 173-207. doi: 10.1023/A:1018431705579
  • 3. Azizi Samir MAS, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 2005; 6 (2): 612-626. doi: 10.1021/bm0493685
  • 4. Ummartyotin S, Manuspiya H. A critical review on cellulose: from fundamental to an approach on sensor technology. Renewable and Sustainable Energy Reviews 2015; 41: 402-412. doi: 10.1016/j.rser.2014.08.050
  • 5. Willberg-Keyriläinen P, Orelma H, Ropponen J. Injection molding of thermoplastic cellulose esters and their compatibility with poly(lactic acid) and polyethylene. Materials 2018; 11(12). doi: 10.3390/ma11122358
  • 6. Yuan Q, Wu D, Gotama J, Bateman S. Wood fiber reinforced polyethylene and polypropylene composites with high modulus and impact strength. Journal of Thermoplastic Composite Materials 2008; 21: 195-208. doi: 10.1177/0892705708089472
  • 7. Bhat DK, Kumar MS. Biodegradability of PMMA blends with some cellulose derivatives. Journal of Polymers and the Environment 2006; 14 (4): 385-392. doi:10.1007/s10924-006-0032-5
  • 8. Li TQ, Li RKY. A fracture mechanics study of polypropylene–wood flours blends. Polymer-Plastics Technology and Engineering 2001; 40 (1): 1-21. doi: 10.1081/PPT-100000116
  • 9. Rachtanapun P, Selke SEM, Matuana LM. Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. Journal of Applied Polymer Science 2003; 88 (12): 2842-2850. doi: 10.1002/app.12170
  • 10. Mahmood Raouf R, Abdul Wahab Z, Azowa Ibrahim N, Abidin Talib Z, Chieng BW. Transparent blend of poly(methylmethacrylate)/ cellulose acetate butyrate for the protection from ultraviolet. Polymers 2016; 8 (4): 128. doi: 10.3390/polym8040128
  • 11. Wu C-N, Saito T, Yang Q, Fukuzumi H, Isogai A. Increase in the water contact angle of composite film surfaces caused by the assembly of hydrophilic nanocellulose fibrils and nanoclay platelets. ACS Applied Materials & Interfaces 2014; 6 (15): 12707-12712. doi: 10.1021/ am502701e
  • 12. Kwiczak J, Laçin Ö, Demir M, Ahan R, Seker UOS et al. A sustainable preparation of catalytically active and antibacterial cellulose metal nanocomposites via ball-milling of cellulose. Green Chemistry 2019; 22: 455-464. doi: 10.1039/C9GC02781E
  • 13. Gong MM, Sinton D. Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chemical Reviews 2017; 117 (12): 8447-8480. doi: 10.1021/acs.chemrev.7b00024
  • 14. Zhong T, Oporto GS, Jaczynski J. Antimicrobial food packaging with cellulose-copper nanoparticles embedded in thermoplastic resins. In: Grumezescu AM (editor). Food Preservation. Nanotechnology in the Agri-Food Industry. Cambridge, MA, USA: Academic Press, 2017, pp. 671-702.
  • 15. Zhong T, Oporto GS, Jaczynski J, Jiang C. Nanofibrillated cellulose and copper nanoparticles embedded in polyvinyl alcohol films for antimicrobial applications. BioMed Research International 2015. doi: 10.1155/2015/456834
  • 16. Salata O. Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology 2004; 2: 1-6. doi: 10.1186/1477-3155-2-3
  • 17. Tiquia-Arashiro S, Rodrigues D. Application of Nanoparticles. In: Tiquia-Arashiro S, Rodrigues DF (editors). Extremophiles: Applications in Nanotechnology. Cham, Switzerland: Springer International Publishing, 2016, pp. 163-193.
  • 18. Santos CSC, Gabriel B, Blanchy M, Menes O, García D et al. Industrial applications of nanoparticles – a prospective overview. Materials Today: Proceedings 2015; 2 (1): 456-465. doi: 10.1016/j.matpr.2015.04.056
  • 19. Kaushik M, Moores A. Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chemistry 2016;18 (3): 622-637. doi: 10.1039/C5GC02500A
  • 20. De Moura MR, Mattoso LHC, Zucolotto V. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering 2012; 109 (3): 520-524. doi: 10.1016/j.jfoodeng.2011.10.030
  • 21. Tsuzuki T, McCormick PG. Mechanochemical synthesis of nanoparticles. Journal of Materials Science 2004; 39 (16): 5143-5146. doi: 10.1023/B:JMSC.0000039199.56155.f9
  • 22. Rak MJ, Friščić T, Moores A. Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discussions 2014; 170: 155-167. doi: 10.1039/c4fd00053f
  • 23. Baláž M, Daneu N, Balážová Ľ, Dutková E, Tkáčiková L et al. Bio-mechanochemical synthesis of silver nanoparticles with antibacterial activity. Advanced Powder Technology 2017; 28 (12): 3307-3312. doi: 10.1016/j.apt.2017.09.028
  • 24. Temnikov MN, Anisimov AA, Zhemchugov PV, Kholodkov DN, Goloveshkin AS et al. Mechanochemistry – a new powerful green approach to the direct synthesis of alkoxysilanes. Green Chemistry 2018; 20 (9): 1962-1969. doi: 10.1039/C7GC03862C
  • 25. Allaf RM, Albarahmieh E, AlHamarneh BM. Solid-state compounding of immiscible PCL-PEO blend powders for molding processes. Journal of the Mechanical Behavior of Biomedical Materials 2019; 97: 198-211. doi: 10.1016/j.jmbbm.2019.05.023
  • 26. Smith AP, Spontak RJ, Ade H, Smith SD, Koch CC. High-energy cryogenic blending and compatibilizing of immiscible polymers. Advanced Materials 1999; 11 (15): 1277-1281. doi: 10.1002/(SICI)1521-4095(199910)11:15<1277::AID-ADMA1277>3.0.CO;2-9
  • 27. Smith AP, Ade H, Balik CM, Koch CC, Smith SD et al. Cryogenic mechanical alloying of poly(methyl methacrylate) with polyisoprene and poly(ethylene-alt-propylene). Macromolecules 2000; 33 (7): 2595-2604. doi: 10.1021/ma991453v
  • 28. Smith AP, Shay JS, Spontak RJ, Balik CM, Ade H et al. High-energy mechanical milling of poly(methyl methacrylate), polyisoprene and poly(ethylene-alt-propylene). Polymer 2000; 41 (16): 6271-6283. doi: 10.1016/S0032-3861(99)00830-7
  • 29. Smith AP, Ade H, Koch CC, Smith SD, Spontak RJ. Addition of a block copolymer to polymer blends produced by cryogenic mechanical alloying. Macromolecules 2000; 33 (4): 1163-1172. doi: 10.1021/ma9915475
  • 30. Zhang F, Qiu W, Yang L, Endo T, Hirotsu T. Mechanochemical preparation and properties of a cellulose–polyethylene composite. Journal of Materials Chemistry 2002; 12 (1): 24-26. doi: 10.1039/B108255H
  • 31. Qiu W, Endo T, Hirotsu T. Interfacial interactions of a novel mechanochemical composite of cellulose with maleated polypropylene. Journal of Applied Polymer Science 2004; 94 (3): 1326-1335. doi: 10.1002/app.21123
  • 32. Sakaguchi M, Makino M, Ohura T, Iwata T. Mechanoanions produced by mechanical fracture of bacterial cellulose: ionic nature of glycosidic linkage and electrostatic charging. The Journal of Physical Chemistry A 2012; 116 (40): 9872-9877. doi: 10.1021/jp306261k
  • 33. Baytekin HT, Baytekin B, Grzybowski BA. Mechanoradicals created in “polymeric sponges” drive reactions in aqueous media. Angewandte Chemie International Edition 2012 ;51 (15): 3596-3600. doi: 10.1002/anie.201108110
  • 34. Sakaguchi M, Ohura T, Iwata T, Takahashi S, Akai S et al. Diblock copolymer of bacterial cellulose and poly(methyl methacrylate) initiated by chain-end-type radicals produced by mechanical scission of glycosidic linkages of bacterial cellulose. Biomacromolecules 2010; 11 (11): 3059-3066. doi: 10.1021/bm100879v
  • 35. Solala I, Henniges U, Pirker KF, Rosenau T, Potthast A et al. Mechanochemical reactions of cellulose and styrene. Cellulose 2015; 22 (5): 3217-3224. doi: 10.1007/s10570-015-0724-x
  • 36. Baytekin HT, Baytekin B, Huda S, Yavuz Z, Grzybowski BA. Mechanochemical activation and patterning of an adhesive surface toward nanoparticle deposition. Journal of the American Chemical Society 2015; 137 (5): 1726-1729. doi: 10.1021/ja507983x
  • 37. Baytekin HT, Baytekin B, Hermans TM, Kowalczyk B, Grzybowski BA. Control of surface charges by radicals as a principle of antistatic polymers protecting electronic circuitry. Science 2013; 341 (6152): 1368-1371. doi: 10.1126/science.1241326
  • 38. Hu H, Xin JH, Hu H, Wang X, Miao D et al. Synthesis and stabilization of metal nanocatalysts for reduction reactions – a review. Journal of Materials Chemistry A 2015; 3 (21): 11157-11182. doi: 10.1039/C5TA00753D
  • 39. Din MI, Khalid R, Hussain Z, Hussain T. Mujahid A et al. Nanocatalytic assemblies for catalytic reduction of nitrophenols: a critical review. Critical Reviews in Analytical Chemistry 2020; 50 (4): 322-338. doi: 10.1080/10408347.2019.1637241
  • 40. Cheng H-H, Chen F, Yu J, Guo Z-X. Gold-nanoparticle-decorated thermoplastic polyurethane electrospun fibers prepared through a chitosan linkage for catalytic applications. Journal of Applied Polymer Science 2017; 134 (1): 1-9. doi: 10.1002/app.44336
  • 41. Liao G, Chen J, Zeng W, Yu C, Yi C et al. Facile preparation of uniform nanocomposite spheres with loading silver nanoparticles on polystyrene-methyl acrylic acid spheres for catalytic reduction of 4-nitrophenol. The Journal of Physical Chemistry C 2016; 120 (45): 25935-25944. doi: 10.1021/acs.jpcc.6b09356
  • 42. Kuroda K, Ishida T, Haruta M. Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. Journal of Molecular Catalysis A: Chemical 2009; 298 (1): 7-11. doi: 10.1016/j.molcata.2008.09.009
  • 43. Laçin Ö, Kwiczak-Yiğitbaşı J, Erkan M, Cevher ŞC, Baytekin B. The morphological changes upon cryomilling of cellulose and concurrent generation of mechanoradicals. Polymer Degradation and Stability 2019; 168: 108945. doi: 10.1016/j.polymdegradstab.2019.108945
  • 44. Sohma J. Mechanochemistry of polymers. Progress in Polymer Science 1989; 14 (4): 451-596. doi: 10.1016/0079-6700(89)90004-X
  • 45. Gubin SP, Yurkov GY, Kosobudsky ID. Nanomaterials based on metal-containing nanoparticles in polyethylene and other carbon-chain polymers. International Journal of Materials and Product Technology 2005; 23: 2-25. doi: 10.1504/IJMPT.2005.006587
  • 46. Pinto RJB, Neves MC, Neto CP, Trindade T. Composites of cellulose and metal nanoparticles. Nanocomposites - New Trends and Developments 2012. doi: 10.5772/50553
  • 47. Ke X, Zhang X, Zhao J, Sarina S, Barry J et al. Selective reductions using visible light photocatalysts of supported gold nanoparticles. Green Chemisry 2012;15 (1): 236-244. doi: 10.1039/C2GC36542A
  • 48. Yinga F, Wang S, Au C-T, Lai S-Y. Effect of the oxidation state of gold on the complete oxidation of isobutane on Au/CeO2 catalysts. Gold Bulletin 2010; 43 (4): 241-251. doi: 10.1007/BF03214994
  • 49. Conte M, Davies CJ, Morgan DJ, Davies TE, Carley FA et al. Modifications of the metal and support during the deactivation and regeneration of Au/C catalysts for the hydrochlorination of acetylene. Catalysis Science & Technology 2012; 3 (1): 128-134. doi: 10.1039/ C2CY20478A
  • 50. Krishnamurthy S, Esterle A, Sharma NC, Sahi SV. Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Research Letters 2014; 9 (1): 627. doi: 10.1186/1556-276X-9-627
  • 51. Sohma J, Sakaguchi M. ESR studies on polymer radicals produced by mechanical destruction and their reactivity. In: New Scientific Aspects. Advances in Polymer Science. Berlin, Germany: Springer, 1976, pp. 109-158.
  • 52. Koga H, Tokunaga E, Hidaka M, Umemura Y, Saito T et al. Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers. Chemical Communications 2010; 46 (45): 8567-8569. doi: 10.1039/C0CC02754E
  • 53. Tang J, Shi Z, Berry RM, Tam KC. Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Industrial & Engineering Chemistry Research 2015; 54 (13): 3299- 3308. doi: 10.1021/acs.iecr.5b00177
  • 54. Chen L, Cao W, Quinlan PJ, Berry RM, Tam KC. Sustainable catalysts from gold-loaded Pplyamidoamine dendrimer-cellulose nanocrystals. ACS Sustainable Chemistry & Engineering 2015; 3 (5): 978-985. doi: 10.1021/acssuschemeng.5b00110
  • 55. Fountoulaki S, Daikopoulou V, Gkizis PL, Tamiolakis I, Armatas GS et al. Mechanistic studies of the reduction of nitroarenes by NaBH4 or hydrosilanes catalyzed by supported gold Nnnoparticles. ACS Catalysis 2014; 4 (10): 3504-3511. doi: 10.1021/cs500379u
  • 56. Geng Q, Du J. Reduction of 4-nitrophenol catalyzed by silver nanoparticles supported on polymer micelles and vesicles. RSC Advances 2014; 4 (32): 16425-16428. doi: 10.1039/C4RA01866D
  • 57. De Oliveira FM, Nascimento LRB de A, Calado CMS, Meneghetti MR, Da Silva MGA. Aqueous-phase catalytic chemical reduction of p-nitrophenol employing soluble gold nanoparticles with different shapes. Catalysts 2016; 6 (12): 215-224. doi: 10.3390/catal6120215
  • 58. Lam E, Hrapovic S, Majid E, Chong JH, Luong JHT. Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale 2012; 4 (3): 997-1002. doi: 10.1039/C2NR11558A
  • 59. Wu X, Lu C, Zhou Z, Yuan G, Xiong R et al. Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environmental Science: Nano 2014; 1 (1): 71-79. doi: 10.1039/C3EN00066D